login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004080 Least k such that H(k) >= n, where H(k) is the harmonic number Sum_{i=1..k} 1/i. 32
0, 1, 4, 11, 31, 83, 227, 616, 1674, 4550, 12367, 33617, 91380, 248397, 675214, 1835421, 4989191, 13562027, 36865412, 100210581, 272400600, 740461601, 2012783315, 5471312310, 14872568831, 40427833596, 109894245429, 298723530401, 812014744422 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
REFERENCES
Bruno Rizzi and Cristina Scagliarini: I numeri armonici. Periodico di matematiche, "Mathesis", pp. 17-58, 1986, numbers 1-2. [From Vincenzo Librandi, Jan 05 2009]
W. Sierpiński, Sur les décompositions de nombres rationnels, Oeuvres Choisies, Académie Polonaise des Sciences, Warsaw, Poland, 1974, p. 181.
N. J. A. Sloane, Illustration for sequence M4299 (=A007340) in The Encyclopedia of Integer Sequences (with Simon Plouffe), Academic Press, 1995.
LINKS
T. D. Noe, Table of n, a(n) for n=0..100 (using Hickerson's formula in A002387)
John V. Baxley, Euler's constant, Taylor's formula, and slowly converging series, Math. Mag. 65 (1992), 302-313.
R. P. Boas, Jr. and J. W. Wrench, Jr., Partial sums of the harmonic series, Amer. Math. Monthly, 78 (1971), 864-870.
Keneth Adrian Dagal, A Lower Bound for tau(n) for k-Multiperfect Number, arXiv:1309.3527 [math.NT], 2013.
J. Sondow and E. W. Weisstein, MathWorld: Harmonic Number
Eric Weisstein's World of Mathematics, Harmonic Series
Eric Weisstein's World of Mathematics, High-Water Mark
FORMULA
Limit_{n->oo} a(n+1)/a(n) = exp(1). - Sébastien Dumortier, Jun 29 2005
a(n) = exp(n - gamma + o(1)). - Charles R Greathouse IV, Mar 10 2009
a(n) = A002387(n) for n>1. - Robert G. Wilson v, Jun 18 2015
EXAMPLE
a(2)=4 because 1/1 + 1/2 + 1/3 + 1/4 > 2.
MAPLE
ListA004080:=proc(q) local a, k, n; a:=1; print(a); k:=1;
for n from 2 to q do while a<n do k:=k+1; a:=a+1/k; od; print(k);
od; end: ListA004080(10^10); # Paolo P. Lava, Jul 03 2013
MATHEMATICA
aux[0] = 0; Do[aux[n] = Floor[Floor[Sum[1/i, {i, n}]]]; If[aux[n] > aux[n - 1], Print[n]], {n, 1, 14000}] (* José María Grau Ribas, Feb 20 2010 *)
a[0] = 0; a[1] = 1; a[n_] := k /. FindRoot[ HarmonicNumber[k] == n, {k, Exp[n - EulerGamma]}, WorkingPrecision -> 50] // Ceiling; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Aug 13 2013, after Charles R Greathouse IV *)
PROG
(PARI) my(t=0, n=0); for(i=0, 10^20, if (i, t+=1./i); if(t>=n, print1(i, ", "); n++)) \\ Thomas Gettys (tpgettys(AT)comcast.net), Jan 21 2007; corrected by Michel Marcus, Jan 19 2022
(Haskell)
import Data.List (findIndex); import Data.Maybe (fromJust)
a004080 n = fromJust $
findIndex (fromIntegral n <=) $ scanl (+) 0 $ map recip [1..]
-- Reinhard Zumkeller, Jul 13 2014
CROSSREFS
Apart from first two terms, same as A002387.
Sequence in context: A104743 A165993 A192312 * A298300 A027115 A077995
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
Terms for n >= 13 computed by Eric W. Weisstein; corrected by James R. Buddenhagen and Eric W. Weisstein, Feb 18 2001
Edited by Dean Hickerson, Apr 19 2003
More terms from Sébastien Dumortier, Jun 29 2005
a(27) from Thomas Gettys (tpgettys(AT)comcast.net), Dec 05 2006
a(28) from Thomas Gettys (tpgettys(AT)comcast.net), Jan 21 2007
Edited by Charles R Greathouse IV, Mar 24 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 01:27 EST 2023. Contains 367717 sequences. (Running on oeis4.)