login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A077995 Expansion of (1-x)/(1-2*x-2*x^2-x^3). 6
1, 1, 4, 11, 31, 88, 249, 705, 1996, 5651, 15999, 45296, 128241, 363073, 1027924, 2910235, 8239391, 23327176, 66043369, 186980481, 529374876, 1498754083, 4243238399, 12013359840, 34011950561, 96293859201, 272624979364, 771849627691, 2185243073311, 6186810381368 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Equals INVERT transform of (1, 3, 4, 4, 4,...). - Gary W. Adamson, Jan 03 2009

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2, 2, 1).

FORMULA

a(n) = Sum_{m=1..n} Sum_{i=0..n-m} C(m+i-1,m-1)*Sum_{j=0..m} C(j,n-3*m +2*j-i) * C(m,j)*2^(n-3*m+2*j-i), n>0, a(0)=1. - Vladimir Kruchinin, May 12 2011

G.f.: 1 + x/(G(0)-x) where G(k)=  1 - x*(2*k+2)/(1 - 1/(1 + (2*k+2)/G(k+1)));(continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 17 2012

a(0)=1, a(1)=1, a(2)=4, a(n) = 2*a(n-1) + 2*a(n-2) + a(n-3). - Harvey P. Dale, Sep 11 2013

MATHEMATICA

CoefficientList[Series[(1-x)/(1-2x-2x^2-x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{2, 2, 1}, {1, 1, 4}, 30] (* Harvey P. Dale, Sep 11 2013 *)

PROG

(Maxima) a(n):=sum(sum(binomial(m+i-1, m-1)*sum(binomial(j, n-3*m+2*j-i) *binomial(m, j) *2^(n-3*m+2*j-i), j, 0, m) , i, 0, n-m) , m, 1, n); - Vladimir Kruchinin, May 12 2011

(PARI) Vec((1-x)/(1-2*x-2*x^2-x^3)+O(x^30)) \\ Charles R Greathouse IV, Sep 24 2012

(MAGMA) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/( 1-2*x-2*x^2-x^3) )); // G. C. Greubel, Jun 27 2019

(Sage) ((1-x)/(1-2*x-2*x^2-x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019

(GAP) a:=[1, 1, 4];; for n in [4..30] do a[n]:=2*a[n-1]+2*a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jun 27 2019

CROSSREFS

Sequence in context: A004080 A298300 A027115 * A276293 A282856 A296572

Adjacent sequences:  A077992 A077993 A077994 * A077996 A077997 A077998

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Nov 17 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 19 04:10 EDT 2019. Contains 326109 sequences. (Running on oeis4.)