login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352806
Orders of the finite groups PSL_2(K) when K is a finite field with q = A246655(n) elements.
4
6, 12, 60, 60, 168, 504, 360, 660, 1092, 4080, 2448, 3420, 6072, 7800, 9828, 12180, 14880, 32736, 25308, 34440, 39732, 51888, 58800, 74412, 102660, 113460, 262080, 150348, 178920, 194472, 246480, 265680, 285852, 352440, 456288, 515100, 546312, 612468, 647460
OFFSET
1,1
COMMENTS
For a communtative unital ring R, PSL_n(R), the projective special linear group of order n over R, is defined as SL_n(R)/{r*I_n: r^n = 1}. This is related to PGL_n(R), the projective general linear group of order n over R, which is defined as GL_n(R)/{r*I_n: r is a unit of R}.
Note that a(3) = a(4) = 60 refer to the same group (PSL(2,4) = PSL(2,5) = Alt(5)). Also PSL(2,9) = Alt(6).
FORMULA
|PSL(2,q)| = q*(q^2-1)/2 if q is odd, q*(q^2-1) otherwise.
|PSL(2,q)| = |PGL(2,q)|/gcd(2,q-1) = |SL(2,q)|/gcd(2,q-1).
In general, |PSL(n,q)| = |PGL(n,q)|/gcd(n,q-1) = |SL(n,q)|/gcd(n,q-1).
EXAMPLE
a(6) = 504 since A246655(6) = 8, so a(6) = 8*(8^2-1)/gcd(2,8-1) = 504.
a(7) = 360 since A246655(7) = 9, so a(7) = 9*(9^2-1)/gcd(2,9-1) = 360.
PROG
(PARI) [(q+1)*q*(q-1)/gcd(2, q-1) | q <- [1..200], isprimepower(q)]
CROSSREFS
Cf. A246655.
Order of GL(2,q): A059238;
SL(2,q): A329119;
PGL(2,q): A329119;
PSL(2,q): this sequence;
Aut(GL(2,q)): A353247;
PGammaL(2,q) = Aut(SL(2,q)) = Aut(PGL(2,q)) = Aut(PSL(2,q)): A352807.
A117762 is a subsequence, A335000 is a supersequence.
Sequence in context: A076305 A088944 A335000 * A033931 A228847 A093901
KEYWORD
nonn
AUTHOR
Jianing Song, Apr 04 2022
STATUS
approved