Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jul 03 2023 05:53:52
%S 6,12,60,60,168,504,360,660,1092,4080,2448,3420,6072,7800,9828,12180,
%T 14880,32736,25308,34440,39732,51888,58800,74412,102660,113460,262080,
%U 150348,178920,194472,246480,265680,285852,352440,456288,515100,546312,612468,647460
%N Orders of the finite groups PSL_2(K) when K is a finite field with q = A246655(n) elements.
%C For a communtative unital ring R, PSL_n(R), the projective special linear group of order n over R, is defined as SL_n(R)/{r*I_n: r^n = 1}. This is related to PGL_n(R), the projective general linear group of order n over R, which is defined as GL_n(R)/{r*I_n: r is a unit of R}.
%C Note that a(3) = a(4) = 60 refer to the same group (PSL(2,4) = PSL(2,5) = Alt(5)). Also PSL(2,9) = Alt(6).
%H Jianing Song, <a href="/A352806/b352806.txt">Table of n, a(n) for n = 1..10000</a>
%H Groupprops, <a href="https://groupprops.subwiki.org/wiki/Projective_special_linear_group">Projective special linear group</a>
%F |PSL(2,q)| = q*(q^2-1)/2 if q is odd, q*(q^2-1) otherwise.
%F |PSL(2,q)| = |PGL(2,q)|/gcd(2,q-1) = |SL(2,q)|/gcd(2,q-1).
%F In general, |PSL(n,q)| = |PGL(n,q)|/gcd(n,q-1) = |SL(n,q)|/gcd(n,q-1).
%e a(6) = 504 since A246655(6) = 8, so a(6) = 8*(8^2-1)/gcd(2,8-1) = 504.
%e a(7) = 360 since A246655(7) = 9, so a(7) = 9*(9^2-1)/gcd(2,9-1) = 360.
%o (PARI) [(q+1)*q*(q-1)/gcd(2,q-1) | q <- [1..200], isprimepower(q)]
%Y Cf. A246655.
%Y Order of GL(2,q): A059238;
%Y SL(2,q): A329119;
%Y PGL(2,q): A329119;
%Y PSL(2,q): this sequence;
%Y Aut(GL(2,q)): A353247;
%Y PGammaL(2,q) = Aut(SL(2,q)) = Aut(PGL(2,q)) = Aut(PSL(2,q)): A352807.
%Y A117762 is a subsequence, A335000 is a supersequence.
%K nonn
%O 1,1
%A _Jianing Song_, Apr 04 2022