login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352807
Orders of the finite groups PGammaL_2(K) when K is a finite field with q = A246655(n) elements.
3
6, 24, 120, 120, 336, 1512, 1440, 1320, 2184, 16320, 4896, 6840, 12144, 31200, 58968, 24360, 29760, 163680, 50616, 68880, 79464, 103776, 235200, 148824, 205320, 226920, 1572480, 300696, 357840, 388944, 492960, 2125440, 571704, 704880, 912576, 1030200, 1092624
OFFSET
1,1
COMMENTS
PGammaL_n(K) is the projective semilinear group of order n over K (see Wikipedia link). It is the semidirect product of PGL_n(K) and Aut(K), where Aut(K) is the group of field automorphisms of K. So if p is a prime, then PGammaL(n,p) is isomorphic to PGL(n,p).
We also have Aut(SL_n(K)) = Aut(PGL_n(K)) = Aut(PSL_n(K)) for arbitrary field K, and when n = 2 this is isomorphic to PGammaL_2(K). If n >= 3, this is isomorphic to the semidirect product of PGammaL_2(K) and C_2.
Examples are PGammaL(2,2) = S_3, PGammaL(2,3) = S_4, PGammaL(2,4) = PGammaL(2,5) = S_5, PGammaL(2,9) = Aut(S_6) = Aut(A_6).
FORMULA
For q = p^r, |PGammaL(2,q)| = r*q*(q^2-1) = r*|PGL(2,q)|. In general, |PGammaL(n,q)| = r*|PGL(n,q)|.
EXAMPLE
a(6) = 1512 since A246655(6) = 8 = 2^3, so a(6) = 3*A329119(6) = 3*504 = 1512.
a(7) = 1440 since A246655(7) = 9 = 3^2, so a(7) = 2*A329119(7) = 2*720 = 1440.
PROG
(PARI) [(q+1)*q*(q-1)*isprimepower(q) | q <- [1..200], isprimepower(q)]
CROSSREFS
Cf. A246655.
Order of GL(2,q): A059238;
SL(2,q): A329119;
PGL(2,q): A329119;
PSL(2,q): A352806;
Aut(GL(2,q)): A353247;
PGammaL(2,q) = Aut(SL(2,q)) = Aut(PGL(2,q)) = Aut(PSL(2,q)): this sequence.
Sequence in context: A217193 A109583 A377502 * A100934 A127917 A293118
KEYWORD
nonn
AUTHOR
Jianing Song, Apr 04 2022
STATUS
approved