login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100934
Numbers having more than one representation as the product of consecutive integers.
3
6, 24, 120, 210, 720, 5040, 40320, 175560, 362880, 3628800, 17297280, 19958400, 39916800, 259459200, 479001600, 6227020800, 87178291200, 1307674368000, 20922789888000, 355687428096000, 6402373705728000, 20274183401472000, 121645100408832000
OFFSET
1,1
COMMENTS
All the factorials occur because we allow products to start with 1. See A064224 for a more restrictive case.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..26
H. L. Abbott, P. Erdos and D. Hanson, On the numbers of times an integer occurs as a binomial coefficient, Amer. Math. Monthly, (March 1974), 256-261.
EXAMPLE
120 is a term since 120 = 1*2*3*4*5 = 2*3*4*5 = 4*5*6.
210 is a term since 210 = 14*15 = 5*6*7.
Other non-factorial terms are:
175560 = Product_{i=55..57} i = Product_{i=19..22} i,
17297280 = Product_{i=63..66} i = Product_{i= 8..14} i,
19958400 = Product_{i= 5..12} i = Product_{i= 3..11} i,
259459200 = Product_{i= 8..15} i = Product_{i= 5..13} i,
20274183401472000 = Product_{i=6..20} i = Product_{i=4..19} i.
MATHEMATICA
nn=10^10; t3={}; Do[m=0; p=n; While[m++; p=p(n+m); p<=nn, t3={t3, p}], {n, Sqrt[nn]}]; t3=Sort[Flatten[t3]]; lst={}; Do[If[t3[[i]]==t3[[i+1]], AppendTo[lst, t3[[i]]]], {i, Length[t3]-1}]; Union[lst]
PROG
(Python)
import heapq
def aupton(terms, verbose=False):
p = 1*2; h = [(p, 1, 2)]; nextcount = 3; alst = []; oldv = None
while len(alst) < terms:
(v, s, l) = heapq.heappop(h)
if v == oldv and v not in alst:
alst.append(v)
if verbose: print(f"{v}, [= Prod_{{i = {s}..{l}}} i = Prod_{{i = {olds}..{oldl}}} i]")
if v >= p:
p *= nextcount
heapq.heappush(h, (p, 1, nextcount))
nextcount += 1
oldv, olds, oldl = v, s, l
v //= s; s += 1; l += 1; v *= l
heapq.heappush(h, (v, s, l))
return alst
print(aupton(20, verbose=True)) # Michael S. Branicky, Jun 24 2021
CROSSREFS
Cf. A064224, A003015 (numbers occurring 5 or more times in Pascal's triangle).
Sequence in context: A109583 A377502 A352807 * A127917 A293118 A293121
KEYWORD
nonn
AUTHOR
T. D. Noe, Nov 22 2004
EXTENSIONS
a(18) and beyond from Michael S. Branicky, Jun 24 2021
STATUS
approved