Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Aug 12 2022 19:00:10
%S 6,24,120,120,336,1512,1440,1320,2184,16320,4896,6840,12144,31200,
%T 58968,24360,29760,163680,50616,68880,79464,103776,235200,148824,
%U 205320,226920,1572480,300696,357840,388944,492960,2125440,571704,704880,912576,1030200,1092624
%N Orders of the finite groups PGammaL_2(K) when K is a finite field with q = A246655(n) elements.
%C PGammaL_n(K) is the projective semilinear group of order n over K (see Wikipedia link). It is the semidirect product of PGL_n(K) and Aut(K), where Aut(K) is the group of field automorphisms of K. So if p is a prime, then PGammaL(n,p) is isomorphic to PGL(n,p).
%C We also have Aut(SL_n(K)) = Aut(PGL_n(K)) = Aut(PSL_n(K)) for arbitrary field K, and when n = 2 this is isomorphic to PGammaL_2(K). If n >= 3, this is isomorphic to the semidirect product of PGammaL_2(K) and C_2.
%C Examples are PGammaL(2,2) = S_3, PGammaL(2,3) = S_4, PGammaL(2,4) = PGammaL(2,5) = S_5, PGammaL(2,9) = Aut(S_6) = Aut(A_6).
%H Jianing Song, <a href="/A352807/b352807.txt">Table of n, a(n) for n = 1..10000</a>
%H Groupprops, <a href="https://groupprops.subwiki.org/wiki/Projective_semilinear_group">Projective semilinear group</a>
%H Mathematics Stack Exchange, <a href="https://math.stackexchange.com/questions/4419869/do-the-groups-operatornamesl-operatornamepgl-and-operatornamepsl">Do the groups SL, PGL, and PSL over a field K always have the same automorphism group?</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Semilinear_map#projective_semilinear_group">Semilinear map</a>
%F For q = p^r, |PGammaL(2,q)| = r*q*(q^2-1) = r*|PGL(2,q)|. In general, |PGammaL(n,q)| = r*|PGL(n,q)|.
%e a(6) = 1512 since A246655(6) = 8 = 2^3, so a(6) = 3*A329119(6) = 3*504 = 1512.
%e a(7) = 1440 since A246655(7) = 9 = 3^2, so a(7) = 2*A329119(7) = 2*720 = 1440.
%o (PARI) [(q+1)*q*(q-1)*isprimepower(q) | q <- [1..200], isprimepower(q)]
%Y Cf. A246655.
%Y Order of GL(2,q): A059238;
%Y SL(2,q): A329119;
%Y PGL(2,q): A329119;
%Y PSL(2,q): A352806;
%Y Aut(GL(2,q)): A353247;
%Y PGammaL(2,q) = Aut(SL(2,q)) = Aut(PGL(2,q)) = Aut(PSL(2,q)): this sequence.
%K nonn
%O 1,1
%A _Jianing Song_, Apr 04 2022