login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266908
G.f. A(x) satisfies: x = Sum_{n>=1} x^n * Product_{k=1..n} A(-k*x).
1
1, 1, 2, 7, 45, 578, 15523, 872933, 101606058, 24244705427, 11781372347197, 11604013148951290, 23086334686919094283, 92540040424223196349213, 745956027717908362991989762, 12075313247950868952015337447195, 392133966660263237084551188748738021, 25526209248562553823289966078580478182370, 3328929359036770266032093183197212572084089475, 869367378139090634989087434871564181449768656675093
OFFSET
0,3
COMMENTS
Compare to: x = Sum_{n>=1} x^n * F(-x)^n if F(x) = 1/(1-x).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 45*x^4 + 578*x^5 + 15523*x^6 + 872933*x^7 + 101606058*x^8 + 24244705427*x^9 + 11781372347197*x^10 +...
where
x = x*A(-x) + x^2*A(-x)*A(-2*x) + x^3*A(-x)*A(-2*x)*A(-3*x) + x^4*A(-x)*A(-2*x)*A(-3*x)*A(-4*x) + x^5*A(-x)*A(-2*x)*A(-3*x)*A(-4*x)*A(-5*x) +...
The array of coefficients in [Product_{k=1..n} A(-k*x)] begins:
n=1: [1, -1, 2, -7, 45, -578, 15523, -872933, ...];
n=2: [1, -3, 12, -75, 851, -20052, 1030839, -113682051, ...];
n=3: [1, -6, 39, -354, 5504, -177612, 12901857, -2062308438, ...];
n=4: [1, -10, 95, -1150, 22376, -889420, 81529745, -16832853850, ...];
n=5: [1, -15, 195, -3000, 69751, -3229425, 351383145, -88131849450, ...];
n=6: [1, -21, 357, -6762, 182791, -9528099, 1183349175, -346858512000, ...];
n=7: [1, -28, 602, -13720, 423577, -24310860, 3353035806, -1117962684216, ...];
n=8: [1, -36, 954, -25704, 895065, -55714068, 8361452286, -3107960056872, ...]; ...
in which the antidiagonal sums yield [1,0,0,0,0,0,0,0,...].
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A]=(-1)^(#A)*Vec(sum(m=1, #A, prod(k=1, m, subst(Ser(A), x, -k*x))*x^m))[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* Quick print of terms 0..30 */
{A=[1]; for(i=1, 30, A=concat(A, 0);
A[#A]=(-1)^(#A)*Vec(sum(n=1, #A, prod(k=1, n, subst(Ser(A), x, -k*x))*x^n))[#A] ); A}
CROSSREFS
Cf. A266812.
Sequence in context: A153549 A348880 A079491 * A162046 A162047 A162048
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 05 2016
STATUS
approved