login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266812
G.f. A(x) satisfies: x = Sum_{n>=1} x^n * A(-n*x)^n.
2
1, 1, 3, 20, 275, 7715, 442829, 52013252, 12463418970, 6068733122286, 5983347820165789, 11909845376819098795, 47751590711064613394253, 384968095355980229463508656, 6232130544342382844541145614017, 202388529404934108378398315232111389, 13174811172856661217741405902912476467102, 1718169371338720383934605528180786424488288815, 448710665138375588210153212519802760598294009498642
OFFSET
0,3
COMMENTS
Compare to: x = Sum_{n>=1} x^n * F(-x)^n if F(x) = 1/(1-x).
a(n) ~ c * 2^(n*(n+1)/2) where c = 0.148227873045508... - Paul D. Hanna, Oct 01 2023
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 20*x^3 + 275*x^4 + 7715*x^5 + 442829*x^6 + 52013252*x^7 + 12463418970*x^8 + 6068733122286*x^9 + ...
where
x = x*A(-x) + x^2*A(-2*x)^2 + x^3*A(-3*x)^3 + x^4*A(-4*x)^4 + x^5*A(-5*x)^5 + x^6*A(-6*x)^6 + x^7*A(-7*x)^7 + x^8*A(-8*x)^8 + x^9*A(-9*x)^9 + ...
The array of coefficients in A(-n*x)^n begins:
n=1: [1, -1, 3, -20, 275, -7715, 442829, -52013252, ...];
n=2: [1, -4, 28, -368, 9584, -515200, 57800832, -13436089856, ...];
n=3: [1, -9, 108, -2133, 79461, -6133806, 1007579331, ...];
n=4: [1, -16, 288, -7680, 366336, -36085760, 7705305088, ...];
n=5: [1, -25, 625, -21250, 1225000, -144393750, 37527343750, ...];
n=6: [1, -36, 1188, -49680, 3343680, -453076416, 137425947840, ...];
n=7: [1, -49, 2058, -103243, 7932904, -1202725727, 413455645435, ...];
n=8: [1, -64, 3328, -196608, 16982016, -2826174464, 1077462171648, ...]; ...
in which the antidiagonal sums yield [1,0,0,0,0,0,0,0,...].
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
A[#A]=(-1)^(#A)*Vec(sum(m=1, #A, subst(Ser(A), x, -m*x)^m*x^m))[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* Quick print of terms 0..30 */
{A=[1]; for(i=1, 30, A=concat(A, 0);
A[#A]=(-1)^(#A)*Vec(sum(n=1, #A, subst(Ser(A), x, -n*x)^n*x^n))[#A] ); A}
CROSSREFS
Cf. A266908.
Sequence in context: A320945 A166232 A136551 * A086229 A369322 A130531
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 05 2016
STATUS
approved