login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125305
Number of 132-segmented permutations of length n.
4
1, 1, 2, 6, 18, 57, 190, 654, 2306, 8290, 30272, 111973, 418666, 1579803, 6008464, 23009240, 88645034, 343334976, 1336105472, 5221667740, 20485272152, 80645855014, 318489386884, 1261428593649, 5009356014722, 19941674099985
OFFSET
0,3
COMMENTS
From [Callan 2006] Theorem 3, the number of permutations on [n] that avoid a nonconsecutive 132 pattern is Sum_{k=0..n/3} binomial(n-2k, k) C_{n-2k}. - Michael Somos, Sep 07 2018
LINKS
A. Claesson, Counting segmented permutations using bicolored Dyck paths, The Electronic Journal of Combinatorics 12 (2005), #R39.
FORMULA
a(n) = sum(binomial(n-2*k,k)*catalan(n-2*k),k=0..floor(n/3)); generating function = C(x + x^3), where C(x) is the generating function for the Catalan numbers.
G.f.: A(x)=1/(1-z/(1-z/(1-z/(...)))) where z=x+x^3 (continued fraction, a special case of the previous formula). - Joerg Arndt, Mar 18 2011
Recurrence: (n+1)*a(n) = 2*(2*n-1)*a(n-1) - (n+1)*a(n-2) + 8*(n-2)*a(n-3) + 2*(2*n-7)*a(n-5). - Vaclav Kotesovec, Mar 21 2014
a(n) ~ sqrt(48 - 4*(27+3*sqrt(273))^(2/3) + 9*(27+3*sqrt(273))^(1/3)) / ((27+3*sqrt(273))^(1/6) * sqrt(3*Pi)) * (16 + (118+6*sqrt(273))^(2/3) + 4*(118+6*sqrt(273))^(1/3))^n / ((118+6*sqrt(273))^(n/3) * n^(3/2) * 3^n). - Vaclav Kotesovec, Mar 21 2014
EXAMPLE
a(4)=18 because of the 24 permutations of {1,2,3,4} only 1243, 1342, 1423, 1432, 2143, 2413 are not 132-segmented; i.e., those permutations have more occurrences of the pattern (1-3-2) than of the pattern (132).
MAPLE
a := n->sum(binomial(n-2*k, k)*catalan(n-2*k), k=0..floor(n/3)); seq(a(n), n=0..25);
MATHEMATICA
Table[Sum[Binomial[n - 2 k, k] Binomial[2 n - 4 * k, n - 2 k]/(n - 2 k + 1), {k, 0, Floor[n/3]}], {n, 0, 40}] (* Vaclav Kotesovec, Mar 21 2014 *)
CROSSREFS
Sequence in context: A000957 A307496 A339044 * A369621 A273203 A148458
KEYWORD
nonn
AUTHOR
Anders Claesson, Dec 09 2006
STATUS
approved