login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024183 Second elementary symmetric function of 3,4,...,n+3. 4
12, 47, 119, 245, 445, 742, 1162, 1734, 2490, 3465, 4697, 6227, 8099, 10360, 13060, 16252, 19992, 24339, 29355, 35105, 41657, 49082, 57454, 66850, 77350, 89037, 101997, 116319, 132095, 149420, 168392, 189112, 211684, 236215, 262815, 291597, 322677 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Ivan Neretin, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

a(n) = n*(n+1)*(3*n^2 + 35*n + 106)/24.

If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k) * Stirling1(n-k,i) * Product_{j=0..k-1} (-a-j), then a(n-2) = f(n,n-2,3), for n >= 3. - Milan Janjic, Dec 20 2008

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Colin Barker, Aug 15 2014

G.f.: -x*(4*x^2-13*x+12) / (x-1)^5. - Colin Barker, Aug 15 2014

MAPLE

seq(n*(n+1)*(3*n^2+35*n+106)/24, n=1..40); # Muniru A Asiru, May 19 2018

MATHEMATICA

f[k_] := k + 2; t[n_] := Table[f[k], {k, 1, n}]

a[n_] := SymmetricPolynomial[2, t[n]]

Table[a[n], {n, 2, 30}]  (* A024183 *)

(* Clark Kimberling, Dec 31 2011 *)

LinearRecurrence[{5, -10, 10, -5, 1}, {12, 47, 119, 245, 445}, 40] (* Vincenzo Librandi, May 03 2018 *)

PROG

(PARI) Vec(-x*(4*x^2-13*x+12)/(x-1)^5 + O(x^100)) \\ Colin Barker, Aug 15 2014

(MAGMA) [n*(n+1)*(3*n^2+35*n+106)/24: n in [1..40]]; // Vincenzo Librandi, May 03 2018

(GAP) List([1..40], n->n*(n+1)*(3*n^2+35*n+106)/24); # Muniru A Asiru, May 19 2018

CROSSREFS

Sequence in context: A159013 A022281 A244803 * A051673 A030623 A030624

Adjacent sequences:  A024180 A024181 A024182 * A024184 A024185 A024186

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 8 20:32 EDT 2021. Contains 343668 sequences. (Running on oeis4.)