login
A062123
a(n) = (9n^2 + 9n + 4)/2.
10
2, 11, 29, 56, 92, 137, 191, 254, 326, 407, 497, 596, 704, 821, 947, 1082, 1226, 1379, 1541, 1712, 1892, 2081, 2279, 2486, 2702, 2927, 3161, 3404, 3656, 3917, 4187, 4466, 4754, 5051, 5357, 5672, 5996, 6329, 6671, 7022, 7382, 7751, 8129, 8516, 8912, 9317
OFFSET
0,1
COMMENTS
Third column of A046741.
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
FORMULA
G.f.: (1+2*x)*(2+x)/(1-x)^3. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
a(n) = 9*n + a(n-1), with n>0, a(0)=2. - Vincenzo Librandi, Aug 07 2010
E.g.f.: (4 +18*x +9*x^2)*exp(x)/2. - G. C. Greubel, Jan 31 2019
MATHEMATICA
Table[2 +9*n*(1+n)/2, {n, 0, 50}] (* G. C. Greubel, Jan 31 2019 *)
LinearRecurrence[{3, -3, 1}, {2, 11, 29}, 50] (* Harvey P. Dale, Jan 12 2020 *)
PROG
(PARI) for (n=0, 1000, write("b062123.txt", n, " ", 2 + (n + n^2)*9/2) ) \\ Harry J. Smith, Aug 02 2009
(Magma) [2 +9*n*(1+n)/2: n in [0..50]]; // G. C. Greubel, Jan 31 2019
(Sage) [2 +9*n*(1+n)/2 for n in range(50)] # G. C. Greubel, Jan 31 2019
(GAP) List([0..50], n -> 2 +9*n*(1+n)/2); # G. C. Greubel, Jan 31 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Jun 04 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
STATUS
approved