OFFSET
0,1
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).
FORMULA
G.f.: (5 + 33*x^2 + 10*x^3 + 31*x + 2*x^4)/(1-x)^5. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), where a(0)=5, a(1)=56, a(2)=263, a(3)=815, a(4)=1982. - Harvey P. Dale, Dec 21 2011
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (40 + 126*n + 165*n^2 + 90*n^3 + 27*n^4)/8.
E.g.f.: (40 + 408*x + 624*x^2 + 252*x^3 + 27*x^4)*exp(x)/8. (End)
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {5, 56, 263, 815, 1982}, 31] (* or *) CoefficientList[Series[(5+33x^2+10x^3+31x+2x^4)/(1-x)^5, {x, 0, 30}], x] (* Harvey P. Dale, Dec 21 2011 *)
Table[(40+126*n+165*n^2+90*n^3+27*n^4)/8, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
PROG
(PARI) vector(40, n, n--; (40+126*n+165*n^2+90*n^3+27*n^4)/8) \\ G. C. Greubel, Jan 31 2019
(Magma) [(40+126*n+165*n^2+90*n^3+27*n^4)/8: n in [0..40]]; // G. C. Greubel, Jan 31 2019
(Sage) [(40+126*n+165*n^2+90*n^3+27*n^4)/8 for n in range(40)] # G. C. Greubel, Jan 31 2019
(GAP) List([0..40], n -> (40+126*n+165*n^2+90*n^3+27*n^4)/8); # G. C. Greubel, Jan 31 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jun 04 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
STATUS
approved