login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055608 Arrays of dumbbells. 9
1, 13, 92, 473, 1982, 7191, 23431, 70234, 196941, 522939, 1327002, 3240917, 7660538, 17602967, 39466363, 86593478, 186399956, 394478234, 822229746, 1690521204, 3433033150, 6893852746, 13702694284, 26982983126, 52680389239 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-31,44,4,-84,66,46,-74,-4,36,-4,-9,1,1).
FORMULA
G.f.: (1+x)^4/((1-x)^4*(1-x-x^2)^5).
a(n) = 2*a(n-1) - a(n-3) + A002889(n) + A002889(n-1).
MATHEMATICA
CoefficientList[Series[(1+x)^4/((1-x)^4*(1-x-x^2)^5), {x, 0, 30}], x] (* G. C. Greubel, Jan 31 2019 *)
PROG
(Haskell)
a055608 n = a055608_list !! (n-1)
a055608_list = 1 : 13 : 92 : zipWith (+)
(zipWith (-) (map (* 2) $ drop 2 a055608_list) a055608_list)
(drop 2 $ zipWith (+) (tail a002889_list) a002889_list)
-- Reinhard Zumkeller, Jan 18 2014
(PARI) my(x='x+O('x^30)); Vec((1+x)^4/((1-x)^4*(1-x-x^2)^5)) \\ G. C. Greubel, Jan 31 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^4/((1-x)^4*(1-x-x^2)^5) )); // G. C. Greubel, Jan 31 2019
(Sage) ((1+x)^4/((1-x)^4*(1-x-x^2)^5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
CROSSREFS
Sequence in context: A300779 A275918 A027670 * A038742 A282709 A005414
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 02 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 08:27 EDT 2024. Contains 371698 sequences. (Running on oeis4.)