login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247710
Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape W; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-2)/2)*2) read by rows.
5
1, 1, 5, 56, 461, 32, 8, 3558, 368, 80, 23966, 3256, 696, 24, 8, 178127, 29564, 6558, 360, 80, 1362597, 266672, 61858, 4852, 770, 24, 8, 10194184, 2361632, 581452, 58732, 8890, 384, 80, 75684682, 20056764, 5220634, 632044, 97174, 5968, 914, 24, 8
OFFSET
0,3
COMMENTS
Sum_{k>0} k * T(n,k) = A247743(n).
LINKS
Wikipedia, Pentomino
EXAMPLE
T(4,2) = 8:
._______. ._______. ._______.
| ._____| |_. |_. | | ._____|
|_| ._| | | |_. | | |_| ._| |
| ._| ._| | | |_| | | ._| | |
|_|___| | | |_. |_| |_| ._| |
|_______| (*2) |___|___| (*2) |___|___| (*4)
Triangle T(n,k) begins:
00 : 1;
01 : 1;
02 : 5;
03 : 56;
04 : 461, 32, 8;
05 : 3558, 368, 80;
06 : 23966, 3256, 696, 24, 8;
07 : 178127, 29564, 6558, 360, 80;
08 : 1362597, 266672, 61858, 4852, 770, 24, 8;
09 : 10194184, 2361632, 581452, 58732, 8890, 384, 80;
10 : 75684682, 20056764, 5220634, 632044, 97174, 5968, 914, 24, 8;
CROSSREFS
Row sums give A174249 or A233427(n,5).
Column k=0 gives A247774.
Cf. A247743.
Sequence in context: A288543 A062125 A030060 * A247774 A258490 A255953
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Sep 23 2014
STATUS
approved