login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape W; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-2)/2)*2) read by rows.
5

%I #13 Feb 06 2017 18:59:10

%S 1,1,5,56,461,32,8,3558,368,80,23966,3256,696,24,8,178127,29564,6558,

%T 360,80,1362597,266672,61858,4852,770,24,8,10194184,2361632,581452,

%U 58732,8890,384,80,75684682,20056764,5220634,632044,97174,5968,914,24,8

%N Number T(n,k) of tilings of a 5 X n rectangle with pentominoes of any shape and exactly k pentominoes of shape W; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-2)/2)*2) read by rows.

%C Sum_{k>0} k * T(n,k) = A247743(n).

%H Alois P. Heinz, <a href="/A247710/b247710.txt">Rows n = 0..145, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentomino">Pentomino</a>

%e T(4,2) = 8:

%e ._______. ._______. ._______.

%e | ._____| |_. |_. | | ._____|

%e |_| ._| | | |_. | | |_| ._| |

%e | ._| ._| | | |_| | | ._| | |

%e |_|___| | | |_. |_| |_| ._| |

%e |_______| (*2) |___|___| (*2) |___|___| (*4)

%e Triangle T(n,k) begins:

%e 00 : 1;

%e 01 : 1;

%e 02 : 5;

%e 03 : 56;

%e 04 : 461, 32, 8;

%e 05 : 3558, 368, 80;

%e 06 : 23966, 3256, 696, 24, 8;

%e 07 : 178127, 29564, 6558, 360, 80;

%e 08 : 1362597, 266672, 61858, 4852, 770, 24, 8;

%e 09 : 10194184, 2361632, 581452, 58732, 8890, 384, 80;

%e 10 : 75684682, 20056764, 5220634, 632044, 97174, 5968, 914, 24, 8;

%Y Row sums give A174249 or A233427(n,5).

%Y Column k=0 gives A247774.

%Y Cf. A247743.

%K nonn,tabf

%O 0,3

%A _Alois P. Heinz_, Sep 23 2014