login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062124
Fourth column of A046741.
3
3, 26, 94, 234, 473, 838, 1356, 2054, 2959, 4098, 5498, 7186, 9189, 11534, 14248, 17358, 20891, 24874, 29334, 34298, 39793, 45846, 52484, 59734, 67623, 76178, 85426, 95394, 106109, 117598, 129888, 143006, 156979, 171834, 187598, 204298
OFFSET
0,1
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).
FORMULA
G.f.: (3 + 14*x + 8*x^2 + 2*x^3)/(1-x)^4. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y) - (1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (6 + 19*n + 18*n^2 + 9*n^3)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (6 + 46*x + 45*x^2 + 9*x^3)*exp(x)/2. (End)
MATHEMATICA
Table[(6+19*n+18*n^2+9*n^3)/2, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
LinearRecurrence[{4, -6, 4, -1}, {3, 26, 94, 234}, 40] (* Harvey P. Dale, Feb 20 2022 *)
PROG
(PARI) vector(40, n, n--; (6+19*n+18*n^2+9*n^3)/2) \\ G. C. Greubel, Jan 31 2019
(Magma) [(6+19*n+18*n^2+9*n^3)/2: n in [0..40]]; // G. C. Greubel, Jan 31 2019
(Sage) [(6+19*n+18*n^2+9*n^3)/2 for n in range(40)] # G. C. Greubel, Jan 31 2019
(GAP) List([0..40], n -> (6+19*n+18*n^2+9*n^3)/2); # G. C. Greubel, Jan 31 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jun 04 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
STATUS
approved