OFFSET
0,1
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: (3 + 14*x + 8*x^2 + 2*x^3)/(1-x)^4. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y) - (1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (6 + 19*n + 18*n^2 + 9*n^3)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (6 + 46*x + 45*x^2 + 9*x^3)*exp(x)/2. (End)
MATHEMATICA
Table[(6+19*n+18*n^2+9*n^3)/2, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
LinearRecurrence[{4, -6, 4, -1}, {3, 26, 94, 234}, 40] (* Harvey P. Dale, Feb 20 2022 *)
PROG
(PARI) vector(40, n, n--; (6+19*n+18*n^2+9*n^3)/2) \\ G. C. Greubel, Jan 31 2019
(Magma) [(6+19*n+18*n^2+9*n^3)/2: n in [0..40]]; // G. C. Greubel, Jan 31 2019
(Sage) [(6+19*n+18*n^2+9*n^3)/2 for n in range(40)] # G. C. Greubel, Jan 31 2019
(GAP) List([0..40], n -> (6+19*n+18*n^2+9*n^3)/2); # G. C. Greubel, Jan 31 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jun 04 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
STATUS
approved