login
A217255
Strong Lucas pseudoprimes.
4
5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309, 58519, 75077, 97439, 100127, 113573, 115639, 130139, 155819, 158399, 161027, 162133, 176399, 176471, 189419, 192509, 197801, 224369, 230691, 231703, 243629, 253259, 268349, 288919, 313499, 324899
OFFSET
1,1
COMMENTS
Strong Lucas pseudoprimes with parameters (P, Q) defined by Selfridge's Method A.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (from Dana Jacobsen's site, terms 1..2000 from R. J. Mathar)
Martin R. Albrecht, Jake Massimo, Kenneth G. Paterson, Juraj Somorovsky, Prime and Prejudice: Primality Testing Under Adversarial Conditions, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 281-298.
Robert Baillie and Samuel S. Wagstaff, Jr., Lucas Pseudoprimes, Mathematics of Computation, 35 (1980), 1391-1417.
Dana Jacobsen, Pseudoprime Statistics, Tables, and Data (includes terms through 10^14)
MATHEMATICA
(* see link *)
CROSSREFS
Cf. A217120 (Lucas pseudoprimes as defined by Baillie and Wagstaff).
Cf. A005845 (Lucas pseudoprimes as defined by Bruckman).
Cf. A217719 (extra strong Lucas pseudoprimes as defined by Baillie).
Sequence in context: A204474 A251052 A259514 * A247715 A043580 A104111
KEYWORD
nonn
AUTHOR
Robert Baillie, Mar 16 2013
STATUS
approved