login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A217253 Number of minimal length formulas representing n only using addition, multiplication, exponentiation and the constant 1. 3
1, 1, 2, 7, 18, 4, 8, 2, 2, 4, 12, 36, 72, 16, 72, 14, 28, 4, 8, 8, 48, 24, 48, 8, 18, 36, 4, 8, 24, 96, 328, 18, 36, 164, 472, 4, 8, 24, 80, 144, 288, 224, 560, 216, 72, 144, 432, 56, 8, 52, 232, 72, 144, 8, 16, 16, 32, 48, 96, 256, 512, 656, 32, 20, 40, 120 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
Edinah K. Ghang and Doron Zeilberger, Zeroless Arithmetic: Representing Integers ONLY using ONE, arXiv:1303.0885 [math.CO], 2013
Wikipedia, Postfix notation
EXAMPLE
a(6) = 4: there are 58 formulas representing 6 only using addition, multiplication, exponentiation and the constant 1. The 4 formulas with minimal length 9 are: 11+111++*, 11+11+1+*, 111++11+*, 11+1+11+*.
a(8) = 2: 11+111++^, 11+11+1+^.
a(9) = 2: 111++11+^, 11+1+11+^.
a(10) = 4: 1111++11+^+, 111+1+11+^+, 111++11+^1+, 11+1+11+^1+.
All formulas are given in postfix (reverse Polish) notation but other notations would give the same results.
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, i, l, m, p, t;
if n=1 then [1, 1] else l, m:= infinity, 0;
for i to n-1 do t:= 1+b(i)[1]+b(n-i)[1];
if t=l then m:= m +b(i)[2]*b(n-i)[2]
elif t<l then l, m:= t, b(i)[2]*b(n-i)[2] fi od;
for d in divisors(n) minus {1, n} do t:= 1+b(d)[1]+b(n/d)[1];
if t=l then m:= m +b(d)[2]*b(n/d)[2]
elif t<l then l, m:= t, b(d)[2]*b(n/d)[2] fi od;
for p in divisors(igcd(seq(i[2], i=ifactors(n)[2])))
minus {0, 1} do t:= 1+b(p)[1]+b(root(n, p))[1];
if t=l then m:= m +b(p)[2]*b(root(n, p))[2]
elif t<l then l, m:= t, b(p)[2]*b(root(n, p))[2] fi od; [l, m]
fi
end:
a:= n-> b(n)[2]:
seq(a(n), n=1..100);
MATHEMATICA
b[1] = {1, 1}; b[n_] := b[n] = Module[{d, i, l, m, p, t}, {l, m} = { Infinity, 0}; For[i=1, i <= n-1, i++, t = 1 + b[i][[1]] + b[n - i][[1]]; Which[t==l, m = m + b[i][[2]]*b[n-i][[2]], t<l, {l, m} = {t, b[i][[2]] * b[n-i][[2]]}]]; Do[t = 1 + b[d][[1]] + b[n/d][[1]]; Which[t==l, m = m + b[d][[2]]*b[n/d][[2]], t<l, {l, m} = {t, b[d][[2]]*b[n/d][[2]] }], {d, Divisors[n] ~Complement~ {1, n}}]; Do[t = 1 + b[p][[1]] + b[Floor[ n^(1/p)]][[1]]; Which[t==l, m = m + b[p][[2]]*b[Floor[n^(1/p)]][[2]], t<l, {l, m} = {t, b[p][[2]]*b[Floor[n^(1/p)]][[2]]}], {p, Divisors[ GCD @@ FactorInteger[n][[ All, 2]]] ~Complement~ {0, 1}}]; {l, m}];
a[n_] := b[n][[2]];
Array[a, 100] (* Jean-François Alcover, Mar 22 2017, translated from Maple *)
CROSSREFS
Sequence in context: A013092 A174311 A220396 * A268837 A104310 A301325
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 16 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 05:36 EST 2023. Contains 367541 sequences. (Running on oeis4.)