

A174311


Value of the nth cyclotomic polynomial at the discriminant of that polynomial.


8



0, 2, 7, 17, 246109501, 13, 22537999301860113141522943, 4294967297, 58149737003032434092905183, 242203001, 5313022609595033985218523349395070147785700752531778166637386100465086995951866123901089470951
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS



FORMULA

a(n) = C_n(A004124(n)) where A004124(n) is the discriminant of C_n(x) and C_n is the nth cyclotomic polynomial.  Robert Israel, Jul 19 2016


EXAMPLE

C_4(x) = x^2 + 1 has discriminant 4 so a(4) = C_4(4) = 17.  Robert Israel, Jul 19 2016


MAPLE

seq(numtheory:cyclotomic(n, discrim(numtheory:cyclotomic(n, x), x)), n=1..20); # Robert Israel, Jul 19 2016


MATHEMATICA

s = {}; Do[d = Discriminant[Cyclotomic[n, x], x]; AppendTo[s, Cyclotomic[n, d]], {n, 1, 20}]; s


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



