login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220396
A modified Engel expansion of the Euler-Mascheroni constant gamma.
5
2, 7, 18, 4, 2, 2, 3, 1466, 1464, 9, 24, 4, 2, 9, 104, 60, 8, 2, 3, 6, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 32, 30, 2, 13, 36, 6, 4, 3, 6, 6, 4, 4, 6, 2, 4, 6, 2, 4, 6, 9, 24, 4, 5, 8, 2, 2, 2, 2, 2, 3, 20
OFFSET
1,1
COMMENTS
See A220393 for the definition of the modified Engel expansion of a positive real number. For further details see the Bala link.
FORMULA
Let h(x) = x*(floor(1/x) + (floor(1/x))^2) - floor(1/x). Let x = gamma (see A001620). Then a(1) = 1 + floor(1/x) and, for n >= 1, a(n+1) = floor(1/h^(n-1)(x))*(1 + floor(1/h^(n)(x))).
Put P(n) = Product_{k = 1..n} a(k). Then we have the Egyptian fraction series expansion sqrt(2) = Sum_{n>=1} 1/P(n) = 1/2 + 1/(2*7) + 1/(2*7*18) + 1/(2*7*18*4) + 1/(2*7*18*4*2) + .... The error made in truncating this series to n terms is less than the n-th term.
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Dec 13 2012
STATUS
approved