The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220393 A modified Engel expansion of Pi. 6
 1, 1, 1, 8, 14, 2, 2, 3, 4, 5, 96, 115, 8, 2, 2, 2, 81, 160, 2, 6, 355, 140, 4, 12, 6, 2, 2, 3, 4, 3, 46, 66, 4, 2, 9, 16, 3, 4, 3, 4, 2, 2, 4, 9, 4, 2, 4, 33, 20, 2, 3, 4, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The Engel expansion of a positive real number x is the unique nondecreasing sequence {e(1), e(2), e(3), ...} of positive integers such that x = 1/e(1) + 1/(e(1)*e(2)) + 1/(e(1)*e(2)*e(3)) + .... The terms in the Engel expansion of x are obtained from the iterates of the mapping g(x) := x*(1 + floor(1/x)) - 1 by means of the formula e(n) = 1 + floor(1/g^(n)(x)). Let h(x) = floor(1/x)*g(x). This is called the harmonic sawtooth map by Crowley. Then the modified Engel expansion of a real number 0 < x <= 1 is a sequence {a(1), a(2), a(3), ...} of positive integers such that x = 1/a(1) + 1/(a(1)*a(2)) + 1/(a(1)*a(2)*a(3)) + ... whose terms are obtained from the iterates of the harmonic sawtooth map h(x) by the formulas a(1) = 1 + floor(1/x) and, for n >= 2, a(n) = floor(1/h^(n-2)(x))*{1 + floor(1/h^(n-1)(x))}. Here h^(n)(x) = h(h^(n-1)(x)) denotes the n-th iterate of the map h(x), with the convention that h^(0)(x) = x. For further details see the Bala link. When the real number x > 1 with, say, floor(x) = m, the modified Engel expansion of x is found by first calculating the modified Engel expansion of x - m and then prepending a sequence of m 1's to this. LINKS Table of n, a(n) for n=1..54. P. Bala, A modified Engel expansion S. Crowley, Integral transforms of the harmonic sawtooth map, the Riemann zeta function, fractal strings, and a finite reflection formula, arXiv:1210.5652 [math.NT] Wikipedia, Engel Expansion FORMULA Let x = Pi - 3. Then a(1) = a(2) = a(3) = 1, a(4) = ceiling(1/x) and, for n >= 1, a(n+4) = floor(1/h^(n-1)(x))*ceiling(1/h^(n)(x)). Put P(n) = Product_{k = 1..n} a(k). Then we have the Egyptian fraction series expansion Pi = Sum_{n>=1} 1/P(n) = 1/1 + 1/1 + 1/1 + 1/8 + 1/(8*14) + 1/(8*14*2) + 1/(8*14*2*2) + .... For n >= 4, the error made in truncating this series to n terms is less than the n-th term. CROSSREFS Cf. A006784, A220335, A220336, A220337, A220338, A220394, A220395, A220396, A220397, A220398. Sequence in context: A177183 A228799 A329499 * A344659 A109847 A260059 Adjacent sequences: A220390 A220391 A220392 * A220394 A220395 A220396 KEYWORD nonn,easy AUTHOR Peter Bala, Dec 13 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 9 22:04 EDT 2023. Contains 363183 sequences. (Running on oeis4.)