OFFSET
1,1
COMMENTS
See A220393 for the definition of the modified Engel expansion of a positive real number. For further details see the Bala link.
LINKS
Peter Bala, A modified Engel expansion
S. Crowley, Integral transforms of the harmonic sawtooth map, the Riemann zeta function, fractal strings, and a finite reflection formula, arXiv:1210.5652 [math.NT], 2012-2020.
Wikipedia, Engel Expansion
FORMULA
Let h(x) = x*(floor(1/x) + (floor(1/x))^2) - floor(1/x). Let x = log(2). Then a(1) = 1 + floor(1/x) and, for n >= 1, a(n+1) = floor(1/h^(n-1)(x))*(1 + floor(1/h^(n)(x))).
Put P(n) = Product_{k = 1..n} a(k). Then we have the Egyptian fraction series expansion log(2) = Sum_{n>=1} 1/P(n) = 1/2 + 1/(2*3) + 1/(2*3*8) + 1/(2*3*8*6) + 1/(2*3*8*6*2) + .... The error made in truncating this series to n terms is less than the n-th term.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Dec 13 2012
STATUS
approved