Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jul 26 2021 01:48:07
%S 2,3,8,6,2,4,93,60,2,2,2,2,3,12,10,2,2,14,52,6,5,8,2,2,5,8,2,2,3,4,14,
%T 273,40,2,3,4,4,12,27,16,14,26,4,6,4,6,2,3,12,10,4,6,14,65,12,8,6,2,7,
%U 90,294,40,2,2,32,155,8,7,12,2,2,2,2,4,6,3,10
%N A modified Engel expansion of log(2).
%C See A220393 for the definition of the modified Engel expansion of a positive real number. For further details see the Bala link.
%H Peter Bala, <a href="/A220393/a220393.pdf">A modified Engel expansion</a>
%H S. Crowley, <a href="http://arxiv.org/abs/1210.5652">Integral transforms of the harmonic sawtooth map, the Riemann zeta function, fractal strings, and a finite reflection formula</a>, arXiv:1210.5652 [math.NT], 2012-2020.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Engel_expansion">Engel Expansion</a>
%F Let h(x) = x*(floor(1/x) + (floor(1/x))^2) - floor(1/x). Let x = log(2). Then a(1) = 1 + floor(1/x) and, for n >= 1, a(n+1) = floor(1/h^(n-1)(x))*(1 + floor(1/h^(n)(x))).
%F Put P(n) = Product_{k = 1..n} a(k). Then we have the Egyptian fraction series expansion log(2) = Sum_{n>=1} 1/P(n) = 1/2 + 1/(2*3) + 1/(2*3*8) + 1/(2*3*8*6) + 1/(2*3*8*6*2) + .... The error made in truncating this series to n terms is less than the n-th term.
%Y Cf. A059180, A220335, A220336, A220337, A220338, A220393, A220394, A220396, A220397, A220398.
%K nonn,easy
%O 1,1
%A _Peter Bala_, Dec 13 2012