|
|
A220398
|
|
A modified Engel expansion of the golden ratio (1/2)*(1 + sqrt(5)) (A001622).
|
|
6
|
|
|
1, 2, 5, 8, 3, 4, 4, 6, 2, 162, 322, 2, 51842, 103682, 2, 5374978562, 10749957122, 2, 57780789062419261442, 115561578124838522882, 2, 6677239169351578707225356193679818792962, 13354478338703157414450712387359637585922, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
See A220393 for a definition of the modified Engel expansion of a positive real number. For further details see the Bala link.
|
|
LINKS
|
Table of n, a(n) for n=1..24.
P. Bala, A modified Engel expansion
S. Crowley, Integral transforms of the harmonic sawtooth map, the Riemann zeta function, fractal strings, and a finite reflection formula, arXiv:1210.5652 [math.NT], 2012.
Wikipedia, Engel Expansion
|
|
FORMULA
|
Let h(x) = x*{floor(1/x) + (floor(1/x))^2} - floor(1/x). Let x = 1/2*(1 + sqrt(5)) - 1. Then a(1) = 1, a(2) = ceiling(1/x) and, for n >= 1, a(n+2) = floor(1/h^(n-1)(x))*{1 + floor(1/h^(n)(x))}.
Recurrence equations: For n >= 3, a(3*n) = 2. For n >= 4 we have a(3*n+2) = 2*a(3*n+1) - 2 and a(3*n+1) =2*(a(3*n-2) - 1)^2.
Put P(n) = product {k = 1..n} a(k). Then we have the Egyptian fraction series expansion sqrt(2) = sum {n = 1..inf} 1/P(n) = 1 + 1/2 + 1/(2*5) + 1/(2*5*8) + 1/(2*5*8*3) + 1/(2*5*8*3*4) + .... For n >= 2, the error made in truncating this series to n terms is less than the n-th term.
|
|
CROSSREFS
|
Cf. A001622, A028259, A220335, A220336, A220337, A220338, A220393, A220394, A220395, A220396, A220397.
Sequence in context: A220337 A198545 A296430 * A200225 A258749 A056886
Adjacent sequences: A220395 A220396 A220397 * A220399 A220400 A220401
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Peter Bala, Dec 13 2012
|
|
STATUS
|
approved
|
|
|
|