login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296430
Decimal expansion of ratio-sum for A296272; see Comments.
1
1, 2, 5, 8, 3, 1, 8, 6, 1, 0, 0, 5, 5, 6, 0, 9, 5, 7, 1, 8, 9, 0, 9, 6, 6, 0, 8, 2, 7, 9, 6, 6, 1, 1, 9, 8, 7, 5, 4, 5, 9, 4, 1, 1, 2, 9, 8, 2, 6, 3, 1, 7, 9, 2, 5, 1, 5, 2, 0, 0, 3, 8, 0, 0, 0, 8, 1, 2, 9, 4, 3, 5, 1, 5, 9, 8, 0, 7, 3, 0, 7, 0, 3, 1, 1, 9
OFFSET
2,2
COMMENTS
Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The ratio-sum for A is |a(1)/a(0) - g| + |a(2)/a(1) - g| + ..., assuming that this series converges. For A = A296272 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.
EXAMPLE
ratio-sum = 12.5831861005560957189096...
MATHEMATICA
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1]*b[n];
j = 1; While[j < 13, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296272 *)
g = GoldenRatio; s = N[Sum[- g + a[n]/a[n - 1], {n, 1, 1000}], 200]
Take[RealDigits[s, 10][[1]], 100] (* A296430 *)
CROSSREFS
Sequence in context: A131598 A220337 A198545 * A220398 A352633 A200225
KEYWORD
nonn,easy,cons
AUTHOR
Clark Kimberling, Dec 14 2017
STATUS
approved