login
A296452
Decimal expansion of limiting power-ratio for A296245; see Comments.
25
3, 5, 9, 2, 9, 5, 4, 9, 2, 5, 5, 5, 8, 3, 1, 8, 4, 0, 9, 0, 2, 1, 6, 6, 6, 8, 7, 8, 3, 5, 1, 2, 1, 9, 1, 3, 2, 0, 7, 1, 5, 1, 8, 3, 9, 7, 5, 7, 9, 0, 8, 5, 6, 0, 7, 0, 8, 3, 0, 3, 1, 7, 9, 1, 0, 5, 2, 3, 9, 2, 8, 0, 5, 5, 2, 9, 5, 3, 9, 2, 1, 7, 7, 5, 4, 6
OFFSET
2,1
COMMENTS
Suppose that A = {a(n)}, for n >= 0, is a sequence, and g is a real number such that a(n)/a(n-1) -> g. The limiting power-ratio for A is the limit as n->oo of a(n)/g^n, assuming that this limit exists. For A = A296245 we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425-A296434 for related ratio-sums and A296452-A296461 for related limiting power-ratios.
EXAMPLE
Limiting power-ratio = 35.92954925558318409021666878351219132071...
MATHEMATICA
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n]^2;
j = 1; While[j < 12, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, 15}] (* A296245 *)
z = 2000; g = GoldenRatio; h = Table[N[a[n]/g^n, z], {n, 0, z}];
StringJoin[StringTake[ToString[h[[z]]], 41], "..."]
Take[RealDigits[Last[h], 10][[1]], 120] (* A296452 *)
CROSSREFS
Sequence in context: A186190 A019739 A101298 * A225594 A210946 A319984
KEYWORD
nonn,easy,cons
AUTHOR
Clark Kimberling, Dec 15 2017
STATUS
approved