

A296425


Decimal expansion of ratiosum for A296245; see Comments.


25



1, 4, 9, 7, 6, 3, 2, 7, 1, 4, 4, 8, 5, 6, 3, 0, 4, 1, 2, 4, 1, 1, 6, 8, 9, 6, 3, 5, 6, 2, 6, 9, 8, 7, 9, 3, 6, 1, 3, 5, 1, 0, 5, 0, 4, 8, 2, 1, 7, 4, 9, 2, 0, 3, 2, 2, 3, 6, 7, 0, 3, 3, 5, 7, 8, 3, 0, 6, 8, 4, 9, 2, 4, 3, 3, 2, 4, 0, 5, 8, 2, 6, 9, 4, 7, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

Suppose that A = (a(n)), for n >= 0, is a sequence, and g is a real number such that a(n)/a(n1) > g. The ratiosum for A is a(1)/a(0)  g + a(2)/a(1)  g + ..., assuming that this series converges. For A = A296245, we have g = (1 + sqrt(5))/2, the golden ratio (A001622). See A296425A296434 for related ratiosums and A296452A296461 for related limiting powerratios.


LINKS

Table of n, a(n) for n=2..87.


EXAMPLE

14.9763271448563041241168963...


MATHEMATICA

a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[n] = a[n  1] + a[n  2] + b[n]^2;
j = 1; While[j < 13, k = a[j]  j  1;
While[k < a[j + 1]  j + 1, b[k] = j + k + 2; k++]; j++];
Table[a[n], {n, 0, k}]; (* A296245 *)
g = GoldenRatio; s = N[Sum[ g + a[n]/a[n  1], {n, 1, 1000}], 200]
Take[RealDigits[s, 10][[1]], 100] (* A296425 *)


CROSSREFS

Cf. A001622, A296245.
Sequence in context: A245670 A166923 A021205 * A335089 A306004 A056992
Adjacent sequences: A296422 A296423 A296424 * A296426 A296427 A296428


KEYWORD

nonn,easy,cons,changed


AUTHOR

Clark Kimberling, Dec 14 2017


STATUS

approved



