login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A335089 Decimal expansion of log(Pi^2/6). 0
4, 9, 7, 7, 0, 0, 3, 0, 2, 4, 7, 0, 7, 4, 5, 3, 4, 7, 4, 7, 4, 3, 7, 7, 3, 4, 4, 3, 2, 5, 4, 1, 5, 1, 5, 0, 5, 7, 1, 5, 9, 8, 9, 3, 3, 6, 4, 7, 6, 1, 8, 4, 3, 7, 1, 7, 1, 8, 7, 1, 7, 9, 9, 8, 1, 3, 3, 8, 7, 6, 2, 4, 5, 8, 1, 3, 4, 8, 4, 7, 7, 0, 8, 7, 7, 6, 7, 4, 5, 8, 7, 4, 0, 8, 2, 8, 6, 3, 9, 0, 7, 4, 0, 4, 8, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..105.

Math Stack Exchange, Infinite series involving Von Mangoldt's function.

Grant Sanderson, What makes the natural log "natural"?, 3Blue1Brown video (2020).

Eric Weisstein's World of Mathematics, Mangold Function.

Eric Weisstein's World of Mathematics, Prime Zeta Function.

FORMULA

Equals Sum_{k>=2} MangoldtLambda(k) / ((k^2)*log(k)).

Equals Sum_{k>=1} (1/k)*(1/(A246655(n)^2)) where k is the exponent of the prime power, A025474(n+1).

Equals Sum_{k>=1} primezeta(2*k)/k.

Equals 2*log(Pi) - log(6).

Equals log(zeta(2)) = log(A013661).

EXAMPLE

Equals 1/(2^2) + 1/(3^2) + (1/(4^2))*(1/2) + 1/(5^2) + + 1/(7^2) + (1/(8^2))*(1/3) + ... = 0.4977003024707...

MATHEMATICA

RealDigits[Log[Pi^2/6], 10, 120][[1]]

RealDigits[Sum[PrimeZetaP[2 k]/k, {k, 1, inf}], 10, 120][[1]]

PROG

(PARI) log(Pi^2/6) \\ Michel Marcus, Sep 15 2020

CROSSREFS

Cf. A000796, A013661, A053510, A131659, A016629.

Cf. A100995, A014963, A025474, A246655.

Sequence in context: A166923 A021205 A296425 * A306004 A056992 A339023

Adjacent sequences:  A335086 A335087 A335088 * A335090 A335091 A335092

KEYWORD

nonn,cons

AUTHOR

Terry D. Grant, Sep 11 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 04:03 EDT 2021. Contains 346457 sequences. (Running on oeis4.)