login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335086
Decimal expansion of the sum of reciprocals of squared composite numbers that are not perfect powers.
1
9, 2, 2, 1, 1, 3, 1, 9, 6, 0, 7, 0, 6, 7, 1, 6, 2, 1, 0, 5, 7, 2, 2, 8, 5, 0, 1, 7, 0, 0, 9, 7, 7, 5, 1, 1, 5, 2, 6, 8, 9, 7, 1, 8, 0, 4, 2, 1, 8, 1, 5, 2, 6, 5, 4, 2, 9, 4, 6, 3, 5, 8, 4, 0, 8, 2, 0, 6, 6, 6, 9, 5, 4, 4, 8, 2, 0, 7, 8, 2, 3, 3, 3, 7, 1, 2, 8, 3, 5, 7, 5, 2, 6, 7, 0, 2, 0, 7, 3, 1, 9, 1, 4, 0, 5
OFFSET
-1,1
FORMULA
Equals Sum_{k>=1} 1/(A106543(k)^2).
Equals zeta(2) - P(2) - 1 - Sum_{k>=2} mu(k)*(1-zeta(2*k)), where P(s) is the prime zeta function. - Amiram Eldar, Dec 03 2022
EXAMPLE
Equals 1/(6^2) + 1/(10^2) + 1/(12^2) + 1/(14^2) + ... = 0.092211319607067162105722850170097751152689718042181...
MATHEMATICA
perfPQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1
scdc[n_] := 1/(Select[Range[n, n], CompositeQ[#] && ! perfPQ[#] &])
N[Total[ParallelTable[scdc[k]^2, {k, 2, 10^8}] /. {} -> Sequence[]], 100]
PROG
(Sage)
sum_A335086 = (i for i in NN if i>3 and not i.is_prime() and not i.is_perfect_power())
s = RLF(0); s
RealField(110)(s)
for i in range(0, 5000000): s += 1 / next(sum_A335086)^2
print(s) #
CROSSREFS
Cf. A106543.
Sequence in context: A239908 A293171 A334689 * A151898 A379385 A080994
KEYWORD
nonn,cons
AUTHOR
Terry D. Grant, Sep 11 2020
EXTENSIONS
a(7)-a(16) from Jinyuan Wang, Nov 07 2020
More digits from Jon E. Schoenfield, Jan 26 2021
STATUS
approved