OFFSET
0,2
COMMENTS
LINKS
Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
Index entries for linear recurrences with constant coefficients, signature (8,-20,16,-4).
FORMULA
a(n) = 8*a(n-1)-20*a(n-2)+16*a(n-3)-4*a(n-4), a(0)=1, a(1)=7, a(2)=34, a(3)=150 for n>=4.
G.f.: (1-x)*(1-2*x^2)/(1-4*x+2*x^2)^2.
a(0)=1; a(n) = 2*n+1+Sum_{k=1..n}[(2+sqrt(2))^(k+1)-(2-sqrt(2))^(k+1)]*(2n-k+1)/(4*sqrt(2)), n>=1.
EXAMPLE
For n = 4, a(4) = 8*a(3)-20*a(2)+16*a(1)-4*a(0) = 8*150-20*34+16*7-4*1 = 628.
MAPLE
f:=x->x*(1-x)/(1-2*x^2):g:=x->(x)/(1-4*x)^2:
C:=n->coeff(series(g(f(x))/x, x, n+1), x, n): seq(C(n), n=0..30);
CROSSREFS
KEYWORD
nonn
AUTHOR
Oboifeng Dira, Sep 11 2020
STATUS
approved