login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335087
Row sums of A335436.
0
1, 7, 34, 150, 628, 2540, 10024, 38840, 148368, 560368, 2096928, 7786592, 28726592, 105390272, 384788096, 1398978432, 5067403520, 18294707968, 65854095872, 236421150208, 846732997632, 3025927678976, 10792083499008, 38420157773824, 136547503083520, 484546494459904, 1716976084393984
OFFSET
0,2
COMMENTS
This sequence is also a composition of generating functions H(x) = G(F(x)), where G(x) = x/(1-4*x)^2 is the generating function of A002697 and F(x) = x*(1-x)/(1-2*x^2) is the generating function of 0, A016116*(-1)^n.
LINKS
Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics (2017), Vol. 41, Issue 6, 849-853.
FORMULA
a(n) = 8*a(n-1)-20*a(n-2)+16*a(n-3)-4*a(n-4), a(0)=1, a(1)=7, a(2)=34, a(3)=150 for n>=4.
G.f.: (1-x)*(1-2*x^2)/(1-4*x+2*x^2)^2.
a(0)=1; a(n) = 2*n+1+Sum_{k=1..n}[(2+sqrt(2))^(k+1)-(2-sqrt(2))^(k+1)]*(2n-k+1)/(4*sqrt(2)), n>=1.
G.f.: G(F(x))/x where G(x) is g.f of A002697 and F(x) is g.f of 0,A016116*(-1)^n.
EXAMPLE
For n = 4, a(4) = 8*a(3)-20*a(2)+16*a(1)-4*a(0) = 8*150-20*34+16*7-4*1 = 628.
MAPLE
f:=x->x*(1-x)/(1-2*x^2):g:=x->(x)/(1-4*x)^2:
C:=n->coeff(series(g(f(x))/x, x, n+1), x, n): seq(C(n), n=0..30);
CROSSREFS
Composition of g.fs of A002697 and A016116.
Cf. A335436.
Sequence in context: A052161 A080960 A243414 * A213119 A099242 A032206
KEYWORD
nonn
AUTHOR
Oboifeng Dira, Sep 11 2020
STATUS
approved