|
|
A056992
|
|
Digital roots of square numbers A000290.
|
|
17
|
|
|
1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9, 4, 1, 9, 1, 4, 9, 7, 7, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Cyclic with a period of nine. Note that (7, 9, 4, 1, 9, 1, 4, 9, 7) is palindromic.
First comment above by Enrique Pérez Herrero and his formula below together give the following identity: 1+Sum_{n>=2}(1+9*((n^2-1)/9-floor((n^2-1)/9)))/10^(n-1) = 499264730/333333333 = 1.49779419149779419149779419... - Alexander R. Povolotsky, Jun 14 201
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (1/108)*{113*(n mod 9)-79*[(n+1) mod 9]+53*[(n+2) mod 9]+77*[(n+3) mod 9]-7*[(n+4) mod 9]+17*[(n+5) mod 9]+41*[(n+6) mod 9]-43*[(n+7) mod 9]-19*[(n+8) mod 9]}, with n>=0. - Paolo P. Lava, Aug 04 2009
a(n) = 3(1 + cos(2n*Pi/3) + cos(4n*Pi/3)) + mod(3n^4+3n^6+4n^8,9). - Ant King, Oct 07 2009
G.f.: x (1+4x+9x^2+7x^3+7x^4+9x^5+4x^6+x^7+9x^8)/((1-x)(1+x+x^2)(1+x^3+x^6)). - Ant King, Oct 20 2009
|
|
MATHEMATICA
|
DigitalRoot[n_Integer?NonNegative] := 1 + 9*FractionalPart[(n - 1)/9] A056992[n_]:=DigitalRoot[n^2] (* Enrique Pérez Herrero, Dec 20 2009 *)
Table[FixedPoint[Total[IntegerDigits[#]]&, n^2], {n, 90}] (* Zak Seidov, Jun 13 2015 *)
PadRight[{}, 120, {1, 4, 9, 7, 7, 9, 4, 1, 9}] (* Harvey P. Dale, Apr 16 2022 *)
|
|
PROG
|
(Haskell)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|