OFFSET
1,2
COMMENTS
Cyclic with a period of nine. Note that (7, 9, 4, 1, 9, 1, 4, 9, 7) is palindromic.
a(n) is also the decimal expansion of 499264730/333333333. - Enrique Pérez Herrero, Jul 28 2009
a(n) is also the digital root of the Wonderful Demlo number A002477(n). - Enrique Pérez Herrero, Dec 20 2009
First comment above by Enrique Pérez Herrero and his formula below together give the following identity: 1+Sum_{n>=2}(1+9*((n^2-1)/9-floor((n^2-1)/9)))/10^(n-1) = 499264730/333333333 = 1.49779419149779419149779419... - Alexander R. Povolotsky, Jun 14 201
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Eric Weisstein's World of Mathematics, Square Number.
FORMULA
a(n) = 1+9*{(n^2-1)/9} , where the symbol {} means fractional part. - Enrique Pérez Herrero, Dec 20 2009
a(n) = 3(1 + cos(2n*Pi/3) + cos(4n*Pi/3)) + mod(3n^4+3n^6+4n^8,9). - Ant King, Oct 07 2009
G.f.: x (1+4x+9x^2+7x^3+7x^4+9x^5+4x^6+x^7+9x^8)/((1-x)(1+x+x^2)(1+x^3+x^6)). - Ant King, Oct 20 2009
MATHEMATICA
DigitalRoot[n_Integer?NonNegative] := 1 + 9*FractionalPart[(n - 1)/9] A056992[n_]:=DigitalRoot[n^2] (* Enrique Pérez Herrero, Dec 20 2009 *)
Table[FixedPoint[Total[IntegerDigits[#]]&, n^2], {n, 90}] (* Zak Seidov, Jun 13 2015 *)
PadRight[{}, 120, {1, 4, 9, 7, 7, 9, 4, 1, 9}] (* Harvey P. Dale, Apr 16 2022 *)
PROG
(Haskell)
a056992 = a010888 . a000290 -- Reinhard Zumkeller, Mar 19 2014
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved