login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169908
a(n) = n*n in carryless digital root arithmetic in base 10.
3
0, 1, 4, 9, 7, 7, 9, 4, 1, 9, 100, 121, 144, 169, 187, 117, 139, 154, 171, 199, 400, 441, 484, 439, 477, 427, 469, 414, 451, 499, 900, 961, 934, 999, 967, 937, 999, 964, 931, 999, 700, 781, 774, 769, 757, 747, 739, 724, 711, 799, 700, 711, 724, 739, 747, 757
OFFSET
0,3
COMMENTS
Addition and multiplication are the same as in school, that is, done in base 10, except that there are no carries and when individual digits are added or multiplied the result is replaced by its digital root (A010888).
EXAMPLE
14*14 = 187:
..14
..14
----
..47
.14.
----
.187
----
MAPLE
A010888 := proc(n)
if n = 0 then
0;
else
1+modp(n-1, 9) ;
end if;
end proc:
carryLmult1dig := proc(a, b)
local adigs, cdigs, d, len ;
if b <= 9 then
adigs := convert(a, base, 10) ;
len := nops(adigs) ;
cdigs := [seq( A010888(b*op(d, adigs)) , d=1..len)] ;
add(op(d, cdigs)*10^(d-1), d=1..len) ;
else
error b, "not smaller than 10" ;
end if;
end proc:
carryLmult := proc(a, b)
local adigs, bdigs, c, len ;
adigs := convert(a, base, 10) ;
bdigs := convert(b, base, 10) ;
len := max(nops(adigs), nops(bdigs)) ;
c := 0 ;
for i from 1 to nops(bdigs) do
carryLmult1dig(a, op(i, bdigs)) ;
c := carryLadd(c, %*10^(i-1)) ;
end do:
c ;
end proc:
A169908 := proc(n)
carryLmult(n, n) ;
end proc: # R. J. Mathar, Jul 12 2013
CROSSREFS
Sequence in context: A306004 A056992 A339023 * A004159 A092554 A155787
KEYWORD
nonn,base
AUTHOR
STATUS
approved