The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056993 a(n) is the smallest k >= 2 such that k^(2^n)+1 is prime, or -1 if no such k exists. 36
 2, 2, 2, 2, 2, 30, 102, 120, 278, 46, 824, 150, 1534, 30406, 67234, 70906, 48594, 62722, 24518, 75898, 919444 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Smallest base value yielding generalized Fermat primes. - Hugo Pfoertner, Jul 01 2003 The first 5 terms correspond with the known (ordinary) Fermat primes. A probable candidate for the next entry is 62722^131072+1, discovered by Michael Angel in 2003. It has 628808 decimal digits. - Hugo Pfoertner, Jul 01 2003 For any n, a(n+1) >= sqrt(a(n)), because k^(2^(n+1))+1 = (k^2)^(2^n)+1. - Jeppe Stig Nielsen, Sep 16 2015 Does the sequence contain any perfect squares? If a(n) is a perfect square, then a(n+1) = sqrt(a(n)). - Jeppe Stig Nielsen, Sep 16 2015 If for a particular n, a(n) exists, then a(i) exist for all i=0,1,2,...,n. No proof is known that this sequence is infinite. Such a result would clearly imply the infinitude of A002496. - Jeppe Stig Nielsen, Sep 18 2015 919444 is a candidate for a(20). See Zimmermann link. - Serge Batalov, Sep 02 2017 Now PrimeGrid has tested and double checked all b^(2^20) + 1 with b < 919444, so we have proof that a(20) = 919444. - Jeppe Stig Nielsen, Dec 30 2017 LINKS Table of n, a(n) for n=0..20. Yves Gallot, Generalized Fermat Prime Search Lucile and Yves Gallot, Generalized Fermat Prime Search Michael Goetz, id=103235 of Top 5000 Primes Luke Harmon, Gaetan Delavignette, Arnab Roy, and David Silva, PIE: p-adic Encoding for High-Precision Arithmetic in Homomorphic Encryption, Cryptology ePrint Archive 2023/700. Stephen Scott, id=84401 of Top 5000 Primes Sylvanus A. Zimmerman, PrimeGrid’s Generalized Fermat Prime Search FORMULA a(n) = A085398(2^(n+1)). - Jianing Song, Jun 13 2022 EXAMPLE The primes are 2^(2^0) + 1 = 3, 2^(2^1) + 1 = 5, 2^(2^2) + 1 = 17, 2^(2^3) + 1 = 257, 2^(2^4) + 1 = 65537, 30^(2^5) + 1, 102^(2^6) + 1, .... MATHEMATICA f[n_] := (p = 2^n; k = 2; While[cp = k^p + 1; !PrimeQ@cp, k++ ]; k); Do[ Print[{n, f@n}], {n, 0, 17}] (* Lei Zhou, Feb 21 2005 *) PROG (PARI) a(n)=my(k=2); while(!isprime(k^(2^n)+1), k++); k \\ Anders Hellström, Sep 16 2015 CROSSREFS Cf. A006093, A005574, A000068, A006314, A006313, A006315, A006316, A056994, A056995, A057465, A057002, A088361, A088362, A226528, A226529, A226530, A251597, A253854, A244150, A243959, A321323. Cf. A019434 (Fermat primes). Sequence in context: A060359 A029665 A256223 * A338931 A057331 A334053 Adjacent sequences: A056990 A056991 A056992 * A056994 A056995 A056996 KEYWORD hard,more,nonn,changed AUTHOR Robert G. Wilson v, Sep 06 2000 EXTENSIONS 1534 from Robert G. Wilson v, Oct 30 2000 62722 from Jeppe Stig Nielsen, Aug 07 2005 24518 and 75898 from Lei Zhou, Feb 01 2012 919444 from Jeppe Stig Nielsen, Dec 30 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 16:06 EDT 2023. Contains 363137 sequences. (Running on oeis4.)