login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006316 Numbers n such that n^64 + 1 is prime.
(Formerly M5368)
35
1, 102, 162, 274, 300, 412, 562, 592, 728, 1084, 1094, 1108, 1120, 1200, 1558, 1566, 1630, 1804, 1876, 2094, 2162, 2164, 2238, 2336, 2388, 2420, 2494, 2524, 2614, 2784, 3024, 3104, 3140, 3164, 3254, 3278, 3628, 3694, 3738, 3750, 4000, 4030, 4058, 4166 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

Dubner, Harvey. "Generalized Fermat primes." J. Recreational Math., 18 (1985): 279-280.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=1..1000

MATHEMATICA

lst={}; Do[If[PrimeQ[n^64+1], Print[n]; AppendTo[lst, n]], {n, 10^4}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 21 2008 *)

Select[Range[0, 4200], PrimeQ[(#^64 + 1)] &] (* Vincenzo Librandi, Sep 25 2012 *)

PROG

(PARI) isA006316(n) = isprime(n^64+1) \\ Michael B. Porter, Mar 28 2010

(MAGMA) [n: n in [1..4200] | IsPrime(n^64 + 1)]; // Vincenzo Librandi, Sep 25 2012

CROSSREFS

Cf. A005574, A000068, A006314, A006313, A006315, A056994, A056995, A057465, A057002, A088361, A088362, A226528, A226529, A226530, A251597, A253854, A244150, A243959, A321323.

Sequence in context: A160918 A145578 A318792 * A242068 A053326 A151955

Adjacent sequences:  A006313 A006314 A006315 * A006317 A006318 A006319

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Robert G. Wilson v

EXTENSIONS

More terms from Hugo Pfoertner, Jun 22 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 11:06 EDT 2019. Contains 328056 sequences. (Running on oeis4.)