

A085398


Let Cn(x) be the nth cyclotomic polynomial; a(n) is the least k>1 such that Cn(k) is prime.


13



3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 6, 2, 4, 3, 2, 10, 2, 22, 2, 2, 4, 6, 2, 2, 2, 2, 2, 14, 3, 61, 2, 10, 2, 14, 2, 15, 25, 11, 2, 5, 5, 2, 6, 30, 11, 24, 7, 7, 2, 5, 7, 19, 3, 2, 2, 3, 30, 2, 9, 46, 85, 2, 3, 3, 3, 11, 16, 59, 7, 2, 2, 22, 2, 21, 61, 41, 7, 2, 2, 8, 5, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: a(n) is defined for all n.  Eric Chen, Nov 14 2014
Existence of a(n) is implied by Bunyakovsky's conjecture.  Robert Israel, Nov 13 2014
a(A072226(n)) = 2.  Eric Chen, Nov 14 2014
a(n) = A117544(n) except when n is a prime power, since if n is a prime power, then A117544(n) = 1.  Eric Chen, Nov 14 2014
a(prime(n)) = A066180(n), a(2*prime(n)) = A103795(n), a(2^n) = A056993(n1), a(3^n) = A153438(n1), a(2*3^n) = A246120(n1), a(3*2^n) = A246119(n1), a(6^n) = A246121(n1), a(5^n) = A206418(n1), a(6*A003586(n)) = A205506(n), a(10*A003592(n)) = A181980(n).


LINKS

Eric Chen, Table of n, a(n) for n = 1..1500
Wikipedia, Bunyakowsky conjecture


EXAMPLE

a(11) = 5 because C11(k) is composite for k = 2, 3, 4 and prime for k = 5.
a(37) = 61 because C37(k) is composite for k = 2, 3, 4, ..., 60 and prime for k = 61.


MAPLE

f:= proc(n) local k;
for k from 2 do if isprime(numtheory:cyclotomic(n, k)) then return k fi od
end proc:
seq(f(n), n = 1 .. 100); # Robert Israel, Nov 13 2014


MATHEMATICA

Table[k = 2; While[!PrimeQ[Cyclotomic[n, k]], k++]; k, {n, 300}] (* Eric Chen, Nov 14 2014 *)


PROG

(PARI) a(n) = k=2; while(!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Nov 13 2014


CROSSREFS

Cf. A117544, A066180, A085399, A103795, A056993, A153438, A246119, A246120, A246121, A206418, A205506, A181980.
Cf. A008864, A006093, A002384, A005574, A049409, A055494, A100330, A000068, A153439, A246392, A162862, A246397, A217070, A006314, A217071, A164989, A217072, A217073, A153440, A217074, A217075, A006313, A097475.
Sequence in context: A104435 A178815 A248743 * A252503 A270003 A067438
Adjacent sequences: A085395 A085396 A085397 * A085399 A085400 A085401


KEYWORD

nonn


AUTHOR

Don Reble, Jun 28 2003


STATUS

approved



