login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A205506 a(n) is the least positive integer > 1 such that 1-a(n)^k+a(n)^(2*k) is prime, where k=A003586[n] 6
2, 2, 6, 2, 3, 5, 7, 3, 4, 3, 6, 93, 2, 88, 5, 33, 5, 196, 15, 106, 174, 196, 14, 342, 207, 28, 372, 14, 47, 25, 569, 646, 141, 129, 278, 5, 421, 224, 629, 26, 424, 1081, 688, 246, 736, 4392, 124, 484, 759, 791, 4401, 863, 2854, 410, 1044, 22, 848, 1402, 2006 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

1-m^k+m^(2*k) equals  Phi(6*k,m) when k=2^p*3^q, p>=0, q>=0, which may be prime numbers for certain positive integer m>1.

The Mathematica program given here generates the first 33 terms.  Further terms were generated by OpenPFGW.

a(62)=7426, while A003586(62)=3^8=6561.

LINKS

Table of n, a(n) for n=1..59.

EXAMPLE

n=1, A003586(1)=1, when m=2, 1-2^1+2^2=3 is prime, so a(1)=2;

n=2, A003586(2)=2, when m=2, 1-2^2+2^4=13 is prime, so a(2)=2;

...

n=7, A003586(7)=9, when m=7, 1-7^9+7^18=1628413557556843 is prime, so a(7)=7.

MATHEMATICA

fQ[n_] := n == 3 EulerPhi@n; a = Select[6 Range@500, fQ]/6; l =

Length[a]; Table[m = a[[j]]; i = 1;

While[i++; cp = 1 - i^m + i^(2*m); ! PrimeQ[cp]]; i, {j, 1, l}]

CROSSREFS

A056993, A153438, A003586

Sequence in context: A134339 A162299 A281552 * A110141 A293443 A247765

Adjacent sequences:  A205503 A205504 A205505 * A205507 A205508 A205509

KEYWORD

nonn,hard

AUTHOR

Lei Zhou, Feb 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 23:32 EDT 2020. Contains 335774 sequences. (Running on oeis4.)