Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Oct 23 2024 00:43:18
%S 2,2,6,2,3,5,7,3,4,3,6,93,2,88,5,33,5,196,15,106,174,196,14,342,207,
%T 28,372,14,47,25,569,646,141,129,278,5,421,224,629,26,424,1081,688,
%U 246,736,4392,124,484,759,791,4401,863,2854,410,1044,22,848,1402,2006
%N Least positive integer m > 1 such that 1 - m^k + m^(2*k) is prime, where k=A003586(n).
%C 1 - m^k + m^(2*k) equals Phi(6*k,m) when k=2^p*3^q, p>=0, q>=0, which may be prime numbers for certain positive integer m>1.
%C The Mathematica program given here generates the first 33 terms. Further terms were generated by OpenPFGW.
%C a(62)=7426, while A003586(62)=3^8=6561.
%F a(n) = A085398(6*A003586(n)). - _Jinyuan Wang_, Jan 01 2023
%F a(n) is smallest positive m such that Phi(A033845(n),m) is prime. - _Chai Wah Wu_, Sep 16 2024
%e n=1, A003586(1)=1, when m=2, 1-2^1+2^2=3 is prime, so a(1)=2;
%e n=2, A003586(2)=2, when m=2, 1-2^2+2^4=13 is prime, so a(2)=2;
%e ...
%e n=7, A003586(7)=9, when m=7, 1-7^9+7^18=1628413557556843 is prime, so a(7)=7.
%t fQ[n_] := n == 3 EulerPhi@n; a = Select[6 Range@500, fQ]/6; l =
%t Length[a]; Table[m = a[[j]]; i = 1;
%t While[i++; cp = 1 - i^m + i^(2*m); ! PrimeQ[cp]]; i, {j, 1, l}]
%o (Python)
%o from itertools import count
%o from sympy import isprime, integer_log
%o def A205506(n):
%o def bisection(f,kmin=0,kmax=1):
%o while f(kmax) > kmax: kmax <<= 1
%o while kmax-kmin > 1:
%o kmid = kmax+kmin>>1
%o if f(kmid) <= kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o return kmax
%o def f(x): return n+x-sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1))
%o k = bisection(f,n,n)
%o return next(filter(lambda m:isprime(1-m**k+m**(k<<1)),count(2))) # _Chai Wah Wu_, Oct 22 2024
%Y Cf. A003586, A033845, A056993, A085398, A153438.
%K nonn,hard
%O 1,1
%A _Lei Zhou_, Feb 01 2012