login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085396
Numerator and denominator sums of convergents to the Thue-Morse constant, 0.412454033...
1
1, 3, 7, 17, 24, 113, 363, 1928, 4219, 6147, 28807, 63761, 92568, 526601, 23263012, 23789613, 118421464, 142211077, 402843618, 1753585549, 2156429167, 3910014716, 6066443883, 34242234131, 485457721717, 519699955848
OFFSET
1,2
COMMENTS
Let k = 0.412454..., then A085396(n)/A085394(n) [i.e., (numerator + denominator)/(numerator)] converges upon 3.424512... as n approaches infinity, where 3.424... = (k+1)/k. A085396(n)/A085395(n) [i.e., (numerator + denominator)/(denominator)], converges upon k+1, = 1.412454... Check: A085396(6)/A085394(6) = 363/106 = 3.4245...; while A085396(6)/A085395(6) = 393/257 = 1.41245... The constants (k+1) and (k+1)/k are generators for the Beatty pairs for the Thue-Morse constant, where the pairs are [(n*(k+1), (n*(k+1)/k], n = 1,2,3,...
FORMULA
a(n) = A085394(n) + A085395(n) = numerator and denominator sums for convergents of 0.412454..., the convergents being 1/2, 2/5, 5/12, 7/17, 33/80, 106/257, 563/1365, 1232/2987, 1795/4352, 8412/20395, ...
EXAMPLE
Convergents to the Thue-Morse constant 0.4124540336... are derived from continued fraction form shown in A014572, starting with A014572(1) = 2; then 0.412454... = [2, 2, 2, 1, 4, 3, 5, 2, 1, ...] (A014572). Example [2] = 1/2, [2,2] = 2/5, [2,2,2] = 5/12 and so on.
MATHEMATICA
mt = 0; Do[ mt = ToString[mt] <> ToString[(10^(2^n) - 1)/9 - ToExpression[mt]], {n, 0, 7}];
d = RealDigits[ N[ ToExpression[mt], 2^7]][[1]];
a = 0; Do[ a = a + N[ d[[n]]/2^(n + 1), 100], {n, 1, 2^7}];
f[n_] := FromContinuedFraction[ ContinuedFraction[a, n]];
Table[ Numerator[ f[n]] + Denominator[ f[n]], {n, 2, 27}]
CROSSREFS
Sequence in context: A056815 A127176 A100343 * A041077 A041663 A042825
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jun 27 2003
EXTENSIONS
Edited by Robert G. Wilson v, Jul 15 2003
STATUS
approved