OFFSET
1,2
COMMENTS
Let k = 0.412454..., then A085396(n)/A085394(n) [i.e., (numerator + denominator)/(numerator)] converges upon 3.424512... as n approaches infinity, where 3.424... = (k+1)/k. A085396(n)/A085395(n) [i.e., (numerator + denominator)/(denominator)], converges upon k+1, = 1.412454... Check: A085396(6)/A085394(6) = 363/106 = 3.4245...; while A085396(6)/A085395(6) = 393/257 = 1.41245... The constants (k+1) and (k+1)/k are generators for the Beatty pairs for the Thue-Morse constant, where the pairs are [(n*(k+1), (n*(k+1)/k], n = 1,2,3,...
FORMULA
EXAMPLE
MATHEMATICA
mt = 0; Do[ mt = ToString[mt] <> ToString[(10^(2^n) - 1)/9 - ToExpression[mt]], {n, 0, 7}];
d = RealDigits[ N[ ToExpression[mt], 2^7]][[1]];
a = 0; Do[ a = a + N[ d[[n]]/2^(n + 1), 100], {n, 1, 2^7}];
f[n_] := FromContinuedFraction[ ContinuedFraction[a, n]];
Table[ Numerator[ f[n]] + Denominator[ f[n]], {n, 2, 27}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jun 27 2003
EXTENSIONS
Edited by Robert G. Wilson v, Jul 15 2003
STATUS
approved