OFFSET
1,2
FORMULA
Write the convergents directly underneath the partial quotients (A014572) for 0.412454033... starting with the first partial quotient, 2: [2, 2, 2, 1, 4, 3, 5, 2, 1, 4, ...] such that [2] = 1/2, [2, 2] = 2/5, [ 2, 2, 2] = 5/12 and so on, the convergents being: 1/2, 2/5, 5/12, 7/17, 33/80, 106, 257, 563/1365, 1232/2987, 1795/4352, 8412/20395, ...
EXAMPLE
[2, 2, 2, 1, 4] = 33/80 = 0.4125.
MATHEMATICA
mt = 0; Do[ mt = ToString[mt] <> ToString[(10^(2^n) - 1)/9 - ToExpression[mt]], {n, 0, 7}]; d = RealDigits[ N[ ToExpression[mt], 2^7]][[1]]; a = 0; Do[ a = a + N[ d[[n]]/2^(n + 1), 100], {n, 1, 2^7}]; f[n_] := FromContinuedFraction[ ContinuedFraction[a, n]]; Table[ Denominator[f[n]], {n, 1, 28}]
CROSSREFS
KEYWORD
frac,nonn
AUTHOR
Gary W. Adamson, Jun 27 2003
EXTENSIONS
Edited by Robert G. Wilson v, Jul 15 2003
STATUS
approved