|
|
A085393
|
|
Difference between the largest and the smallest prime factor of the greatest proper divisor of n.
|
|
3
|
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 5, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 4, 0, 9, 2, 0, 0, 1, 0, 0, 0, 11, 0, 0, 0, 5, 0, 0, 0, 3, 0, 0, 4, 0, 0, 8, 0, 15, 0, 2, 0, 1, 0, 0, 0, 17, 0, 10, 0, 3, 0, 0, 0, 5, 0, 0, 0, 9, 0, 2, 0, 21, 0, 0, 0, 1, 0, 0, 8, 3, 0, 14
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,20
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..16384
|
|
FORMULA
|
a(n) = A085392(n) - A014673(n).
|
|
MATHEMATICA
|
PrimeFactors[n_] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; f[n_] := Block[{gpd = Divisors[n][[ -2]]}, If[gpd == 1, 0, PrimeFactors[gpd][[ -1]] - PrimeFactors[gpd][[1]] ]]; Table[ If[n == 1, 0, f[n]], {n, 1, 102}]
{1}~Join~Array[#[[-1, 1]] - #[[1, 1]] &@ FactorInteger@ Last@ Most@ Divisors@ # &, 101, 2] (* Michael De Vlieger, Dec 03 2017 *)
|
|
CROSSREFS
|
Cf. A014673, A085392.
Sequence in context: A348071 A204060 A359780 * A128980 A096693 A193139
Adjacent sequences: A085390 A085391 A085392 * A085394 A085395 A085396
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert G. Wilson v and Reinhard Zumkeller, Jun 26 2003
|
|
STATUS
|
approved
|
|
|
|