The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181980 Least positive integer m > 1 such that 1 - m^k + m^(2k) - m^(3k) + m^(4k) is prime, where k = A003592(n). 1
 2, 4, 2, 6, 2, 20, 20, 26, 25, 10, 14, 5, 373, 4, 65, 232, 56, 2, 521, 911, 1156, 1619, 647, 511, 34, 2336, 2123, 1274, 2866, 951, 2199, 1353, 4965, 7396, 13513, 3692, 14103, 32275, 2257, 86, 3928, 2779, 18781, 85835, 820, 16647, 2468, 26677, 1172, 38361, 40842 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS 1 - m^k + m^(2*k) - m^(3^k) + m^(4*k) equals Phi(10*k,m). First 15 terms were generated by the provided Mathematica program. All other terms found using OpenPFGW as Fermat and Lucas PRP. Term 16-20, 22-24, 27 have N^2-1 factored over 33.3% and proved using OpenPFGW; terms 21, 25, 29-33, 36, 37, 39, 41, 42, 45, 48, 51 are proved using CHG pari script; terms 26, 28, 34, 40 are proved using kppm PARI script; terms 35, 38, 43, 44, 46, 47, 49, 50 do not yet have a primality certificate. The corresponding prime number of term 51 (40842) has 236089 digits. The corresponding prime numbers for the following terms are equal:   p(3)  = p(2)  = Phi[10, 2^4],   p(12) = p(9)  = Phi[10, 5^50],   p(18) = p(14) = Phi[10, 2^160],   p(25) = p(21) = Phi[10, 34^512],   p(40) = p(34) = Phi[10, 86^4000]. LINKS EXAMPLE n=1, A003592(1) = 1, when a=2, 1 - 2^1 + 2^2 - 2^3 + 2^4 = 11 is prime, so a(1)=2; n=2, A003592(2) = 2, when a=4, 1 - 4^2 + 4^4 - 4^6 + 4^8 = 61681 is prime, so a(2)=4; ... n=13, A003592(13) = 64, when a=373, PrimeQ(1 - 373^64 + 373^128 - 373^192 + 373^256) = True, while for a = 2..372, PrimeQ(1 - a^64 + a^128 - a^192 + a^256) = False, so a(13)=373. MATHEMATICA fQ[n_] := PowerMod[10, n, n] == 0; a = Select[10 Range@100, fQ]/10; l = Length[a]; Table[m = a[[j]]; i = 1; While[i++; cp = 1 - i^m + i^(2*m)-i^(3*m)+i^(4*m); ! PrimeQ[cp]]; i, {j, 1, l}] PROG (PARI) do(k)=my(m=1); while(!ispseudoprime(polcyclo(10*k, m++)), ); m list(lim)=my(v=List(), N); for(n=0, log(lim)\log(5), N=5^n; while(N<=lim, listput(v, N); N<<=1)); apply(do, vecsort(Vec(v))) \\ Charles R Greathouse IV, Apr 04 2012 CROSSREFS Cf. A003592, A205506, A153438, A206418. Sequence in context: A286601 A340071 A102128 * A230436 A105393 A182812 Adjacent sequences:  A181977 A181978 A181979 * A181981 A181982 A181983 KEYWORD nonn,hard AUTHOR Lei Zhou, Apr 04 2012 EXTENSIONS Term 50 added and comments updated by Lei Zhou, Jul 27 2012 Term 51 added and comments updated by Lei Zhou, Oct 10 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 12:49 EST 2022. Contains 350538 sequences. (Running on oeis4.)