The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181983 a(n) = (-1)^(n+1) * n. 25
 0, 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -34, 35, -36, 37, -38, 39, -40, 41, -42, 43, -44, 45, -46, 47, -48, 49, -50, 51, -52, 53, -54, 55, -56, 57, -58, 59 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This is the Lucas U(-2,1) sequence. - R. J. Mathar, Jan 08 2013 Apparently the Mobius transform of A002129. - R. J. Mathar, Jan 08 2013 For n>0, a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = max(i,j) for 1 <= i,j <= n. - Enrique Pérez Herrero, Jan 14 2013 The sums of the terms of this sequence is the divergent series 1 - 2 + 3 - 4 + ... . Euler summed it to 1/4 which was one of the first examples of summing divergent series. - Michael Somos, Jun 05 2013 LINKS Table of n, a(n) for n=0..59. Enrique Pérez Herrero, Max Determinant, 2013. Wikipedia, 1 - 2 + 3 - 4 + .... Wikipedia, Lucas sequence. Index entries for linear recurrences with constant coefficients, signature (-2,-1). Index entries for Lucas sequences. FORMULA G.f.: x / (1 + x)^2. E.g.f.: x / exp(x). a(n) = -a(-n) = -(-1)^n * A001477(n) for all n in Z. a(n+1) = p(n+1) where p(x) is the unique degree-n polynomial such that p(k) = Bernoulli(k) for k = 0, 1, ..., n. A001787(n) = p(0) where p(x) is the unique degree-n polynomial such that p(k) = a(k) for k = 1, ..., n+1. - Michael Somos, Jun 05 2013 Euler transform of length 2 sequence [-2, 2]. Series reversion of g.f. is A000108(n) (Catalan numbers) with a(0)=0. Series reversion of e.g.f. is A000169. INVERT transform omitting a(0)=0 is A049347. PSUM transform is A001057. BINOMIAL transform is A154955. - Michael Somos, Jun 05 2013 n * a(n) = A162395(n). - Michael Somos, Jun 05 2013 a(n) = - A038608(n). - Reinhard Zumkeller, Mar 20 2013 a(n+2) = a(n) - 2*(-1)^n. - G. C. Greubel, Aug 11 2018 a(n) = - A274922(n) if n>0. - Michael Somos, Sep 24 2019 From Amiram Eldar, Oct 24 2023: (Start) Multiplicative with a(2^e) = -2^e, and a(p^e) = p^e for an odd prime p. Dirichlet g.f.: zeta(s-1) * (1-2^(2-s)). (End) EXAMPLE G.f. = x - 2*x^2 + 3*x^3 - 4*x^4 + 5*x^5 - 6*x^6 + 7*x^7 - 8*x^8 + 9*x^9 + ... MAPLE A181983:=n->-(-1)^n * n; seq(A181983(n), n=0..100); # Wesley Ivan Hurt, Feb 26 2014 MATHEMATICA a[ n_] := -(-1)^n n; a[ n_] := Sign[n] SeriesCoefficient[ x / (1 + x)^2, {x, 0, Abs @n}]; a[ n_] := Sign[n] (Abs @n)! SeriesCoefficient[ x / Exp[ x], {x, 0, Abs @n}]; CoefficientList[Series[x/(1+x)^2, {x, 0, 60}], x] (* or *) LinearRecurrence[{-2, -1}, {0, 1}, 60] (* or *) Table[If[OddQ[n], n, -n], {n, 0, 60}] (* Harvey P. Dale, Apr 22 2022 *) PROG (PARI) {a(n) = -(-1)^n * n}; (Haskell) a181983 = negate . a038608 a181983_list = [0, 1] ++ map negate (zipWith (+) a181983_list (map (* 2) \$ tail a181983_list)) -- Reinhard Zumkeller, Mar 20 2013 (Magma) [(-1)^(n+1)*n: n in [0..30]]; // G. C. Greubel, Aug 11 2018 CROSSREFS Cf. A000108, A000169, A001057, A001477, A001787, A002129, A038608, A049347, A154955, A274922. Sequence in context: A274055 A167976 A024000 * A274922 A097141 A160356 Adjacent sequences: A181980 A181981 A181982 * A181984 A181985 A181986 KEYWORD sign,mult,easy AUTHOR Michael Somos, Apr 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 15:57 EDT 2024. Contains 373463 sequences. (Running on oeis4.)