login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097141
Expansion of x*(1+2*x)/(1+x)^2.
4
0, 1, 0, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, -35, 36, -37, 38, -39, 40, -41, 42, -43, 44, -45, 46, -47, 48, -49, 50, -51, 52, -53, 54, -55, 56, -57, 58, -59, 60
OFFSET
0,5
COMMENTS
Partial sums of A097140.
Binomial transform is x(1+x)/(1-x), or {0,1,2,2,2,2,....}.
Second binomial transform is x/((1-x)^2(1 - 2x)), or Eulerian numbers A000295(n+1).
FORMULA
G.f.: x*(1+2*x)/(1+x)^2.
a(n) = (n-2)*(-1)^n + 2*0^n.
a(n) = -2*a(n-1) - a(n-2) for n > 2.
a(n) = A099570(n) for n > 1. - R. J. Mathar, Dec 15 2008
a(n) = (Sum_{k=1..n} k*(-1)^(n-k)*binomial(n-1,k-1)*binomial(2*n-k-1,n-1))/n, n>0, a(0)=0. - Vladimir Kruchinin, Mar 09 2014
a(n) = A038608(n-2) for n > 2. - Georg Fischer, Oct 06 2018
E.g.f.: 2 - exp(-x)*(2 + x). - Stefano Spezia, Mar 07 2023
MAPLE
A097141:=n->(n-2)*(-1)^n: 0, seq(A097141(n), n=1..100); # Wesley Ivan Hurt, Dec 11 2016
MATHEMATICA
CoefficientList[Series[x (1 + 2 x)/(1 + x)^2, {x, 0, 100}], x] (* Vincenzo Librandi, Mar 11 2014 *)
PROG
(Magma) [0] cat [(n-2)*(-1)^n : n in [1..100]]; // Wesley Ivan Hurt, Dec 11 2016
(PARI) a(n)=if(n, (n-2)*(-1)^n, 0) \\ Charles R Greathouse IV, Dec 13 2016
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Jul 29 2004
STATUS
approved