login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105393
Decimal expansion of sum of reciprocals of squares of Fibonacci numbers.
5
2, 4, 2, 6, 3, 2, 0, 7, 5, 1, 1, 6, 7, 2, 4, 1, 1, 8, 7, 7, 4, 1, 5, 6, 9, 4, 1, 2, 9, 2, 6, 6, 2, 0, 3, 7, 4, 3, 2, 0, 2, 5, 9, 7, 7, 4, 5, 1, 3, 8, 3, 0, 9, 0, 5, 1, 1, 0, 1, 0, 2, 8, 3, 4, 5, 4, 6, 6, 1, 1, 9, 3, 7, 5, 1, 1, 1, 9, 7, 8, 6, 3, 6, 8, 7, 7, 5, 3, 8, 9, 8, 1, 5, 2, 1, 5, 3, 6, 3, 6, 3, 7, 9, 2, 1
OFFSET
1,1
COMMENTS
Known to be transcendental. - Benoit Cloitre, Jan 07 2006
Compare with Sum_{n >= 1} 1/(F(n)^2 + 1) = (5*sqrt(5) - 3)/6 and Sum_{n >= 3} 1/(F(n)^2 - 1) = (43 - 15*sqrt(5))/18. - Peter Bala, Nov 19 2019
Duverney et al. (1997) proved that this constant is transcendental. - Amiram Eldar, Oct 30 2020
LINKS
Richard André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci. Paris Ser. I Math., Vol. 308, No. 19 (1989), pp. 539-541.
Daniel Duverney, Keiji Nishioka, Kumiko Nishioka and Iekata Shiokawa, Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Vol. 73, No. 7 (1997), pp. 140-142.
Michel Waldschmidt, Elliptic functions and transcendence, in: Krishnaswami Alladi (ed.), Surveys in number theory, Springer, New York, NY, 2008, pp. 143-188, alternative link. See Corollary 51.
Eric Weisstein's World of Mathematics, Fibonacci Number.
Eric Weisstein's World of Mathematics, Lucas Number.
Eric Weisstein's World of Mathematics, Reciprocal Fibonacci Constant.
FORMULA
Equals Sum_{k>=1} 1/F(k)^2 = 2.4263207511672411877... - Benoit Cloitre, Jan 07 2006
EXAMPLE
2.426320751167241187741569...
MATHEMATICA
RealDigits[Total[1/Fibonacci[Range[500]]^2], 10, 120][[1]] (* Harvey P. Dale, May 31 2016 *)
PROG
(PARI) sum(k=1, 500, 1./fibonacci(k)^2) \\ Benoit Cloitre, Jan 07 2006
CROSSREFS
Cf. A000045, A007598 (squares of Fibonacci numbers).
Sequence in context: A102128 A181980 A230436 * A182812 A354266 A360005
KEYWORD
cons,easy,nonn
AUTHOR
Jonathan Vos Post, Apr 04 2005
EXTENSIONS
More terms from Benoit Cloitre, Jan 07 2006
STATUS
approved