login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105393 Decimal expansion of sum of reciprocals of squares of Fibonacci numbers. 5
2, 4, 2, 6, 3, 2, 0, 7, 5, 1, 1, 6, 7, 2, 4, 1, 1, 8, 7, 7, 4, 1, 5, 6, 9, 4, 1, 2, 9, 2, 6, 6, 2, 0, 3, 7, 4, 3, 2, 0, 2, 5, 9, 7, 7, 4, 5, 1, 3, 8, 3, 0, 9, 0, 5, 1, 1, 0, 1, 0, 2, 8, 3, 4, 5, 4, 6, 6, 1, 1, 9, 3, 7, 5, 1, 1, 1, 9, 7, 8, 6, 3, 6, 8, 7, 7, 5, 3, 8, 9, 8, 1, 5, 2, 1, 5, 3, 6, 3, 6, 3, 7, 9, 2, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Known to be transcendental. - Benoit Cloitre, Jan 07 2006

Compare with Sum_{n >= 1} 1/(F(n)^2 + 1) = (5*sqrt(5) - 3)/6 and Sum_{n >= 3} 1/(F(n)^2 - 1) = (43 - 15*sqrt(5))/18. - Peter Bala, Nov 19 2019

Duverney et al. (1997) proved that this constant is transcendental. - Amiram Eldar, Oct 30 2020

LINKS

Table of n, a(n) for n=1..105.

Richard André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci. Paris Ser. I Math., Vol. 308, No. 19 (1989), pp. 539-541.

Daniel Duverney, Keiji Nishioka, Kumiko Nishioka and Iekata Shiokawa, Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Vol. 73, No. 7 (1997), pp. 140-142.

Michel Waldschmidt, Elliptic functions and transcendence, in: Krishnaswami Alladi (ed.), Surveys in number theory, Springer, New York, NY, 2008, pp. 143-188, alternative link. See Corollary 51.

Eric Weisstein's World of Mathematics, Fibonacci Number.

Eric Weisstein's World of Mathematics, Lucas Number.

Eric Weisstein's World of Mathematics, Reciprocal Fibonacci Constant.

Index entries for transcendental numbers

FORMULA

Equals Sum_{k>=1} 1/F(k)^2 = 2.4263207511672411877... - Benoit Cloitre, Jan 07 2006

EXAMPLE

2.426320751167241187741569...

MATHEMATICA

RealDigits[Total[1/Fibonacci[Range[500]]^2], 10, 120][[1]] (* Harvey P. Dale, May 31 2016 *)

PROG

(PARI) sum(k=1, 500, 1./fibonacci(k)^2) \\ Benoit Cloitre, Jan 07 2006

CROSSREFS

Cf. A000045, A007598 (squares of Fibonacci numbers).

Cf. A079586, A093540, A105394.

Sequence in context: A102128 A181980 A230436 * A182812 A328985 A328196

Adjacent sequences:  A105390 A105391 A105392 * A105394 A105395 A105396

KEYWORD

cons,easy,nonn

AUTHOR

Jonathan Vos Post, Apr 04 2005

EXTENSIONS

More terms from Benoit Cloitre, Jan 07 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 7 19:13 EST 2021. Contains 341928 sequences. (Running on oeis4.)