|
|
A105393
|
|
Decimal expansion of sum of reciprocals of squares of Fibonacci numbers.
|
|
5
|
|
|
2, 4, 2, 6, 3, 2, 0, 7, 5, 1, 1, 6, 7, 2, 4, 1, 1, 8, 7, 7, 4, 1, 5, 6, 9, 4, 1, 2, 9, 2, 6, 6, 2, 0, 3, 7, 4, 3, 2, 0, 2, 5, 9, 7, 7, 4, 5, 1, 3, 8, 3, 0, 9, 0, 5, 1, 1, 0, 1, 0, 2, 8, 3, 4, 5, 4, 6, 6, 1, 1, 9, 3, 7, 5, 1, 1, 1, 9, 7, 8, 6, 3, 6, 8, 7, 7, 5, 3, 8, 9, 8, 1, 5, 2, 1, 5, 3, 6, 3, 6, 3, 7, 9, 2, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Known to be transcendental. - Benoit Cloitre, Jan 07 2006
Compare with Sum_{n >= 1} 1/(F(n)^2 + 1) = (5*sqrt(5) - 3)/6 and Sum_{n >= 3} 1/(F(n)^2 - 1) = (43 - 15*sqrt(5))/18. - Peter Bala, Nov 19 2019
Duverney et al. (1997) proved that this constant is transcendental. - Amiram Eldar, Oct 30 2020
|
|
LINKS
|
Table of n, a(n) for n=1..105.
Richard André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci. Paris Ser. I Math., Vol. 308, No. 19 (1989), pp. 539-541.
Daniel Duverney, Keiji Nishioka, Kumiko Nishioka and Iekata Shiokawa, Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Vol. 73, No. 7 (1997), pp. 140-142.
Michel Waldschmidt, Elliptic functions and transcendence, in: Krishnaswami Alladi (ed.), Surveys in number theory, Springer, New York, NY, 2008, pp. 143-188, alternative link. See Corollary 51.
Eric Weisstein's World of Mathematics, Fibonacci Number.
Eric Weisstein's World of Mathematics, Lucas Number.
Eric Weisstein's World of Mathematics, Reciprocal Fibonacci Constant.
Index entries for transcendental numbers
|
|
FORMULA
|
Equals Sum_{k>=1} 1/F(k)^2 = 2.4263207511672411877... - Benoit Cloitre, Jan 07 2006
|
|
EXAMPLE
|
2.426320751167241187741569...
|
|
MATHEMATICA
|
RealDigits[Total[1/Fibonacci[Range[500]]^2], 10, 120][[1]] (* Harvey P. Dale, May 31 2016 *)
|
|
PROG
|
(PARI) sum(k=1, 500, 1./fibonacci(k)^2) \\ Benoit Cloitre, Jan 07 2006
|
|
CROSSREFS
|
Cf. A000045, A007598 (squares of Fibonacci numbers).
Cf. A079586, A093540, A105394.
Sequence in context: A102128 A181980 A230436 * A182812 A328985 A328196
Adjacent sequences: A105390 A105391 A105392 * A105394 A105395 A105396
|
|
KEYWORD
|
cons,easy,nonn
|
|
AUTHOR
|
Jonathan Vos Post, Apr 04 2005
|
|
EXTENSIONS
|
More terms from Benoit Cloitre, Jan 07 2006
|
|
STATUS
|
approved
|
|
|
|