OFFSET
1,1
COMMENTS
Known to be transcendental. - Benoit Cloitre, Jan 07 2006
Compare with Sum_{n >= 1} 1/(F(n)^2 + 1) = (5*sqrt(5) - 3)/6 and Sum_{n >= 3} 1/(F(n)^2 - 1) = (43 - 15*sqrt(5))/18. - Peter Bala, Nov 19 2019
Duverney et al. (1997) proved that this constant is transcendental. - Amiram Eldar, Oct 30 2020
LINKS
Richard André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Acad. Sci. Paris Ser. I Math., Vol. 308, No. 19 (1989), pp. 539-541.
Daniel Duverney, Keiji Nishioka, Kumiko Nishioka and Iekata Shiokawa, Transcendence of Rogers-Ramanujan continued fraction and reciprocal sums of Fibonacci numbers, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Vol. 73, No. 7 (1997), pp. 140-142.
Michel Waldschmidt, Elliptic functions and transcendence, in: Krishnaswami Alladi (ed.), Surveys in number theory, Springer, New York, NY, 2008, pp. 143-188, alternative link. See Corollary 51.
Eric Weisstein's World of Mathematics, Fibonacci Number.
Eric Weisstein's World of Mathematics, Lucas Number.
Eric Weisstein's World of Mathematics, Reciprocal Fibonacci Constant.
FORMULA
Equals Sum_{k>=1} 1/F(k)^2 = 2.4263207511672411877... - Benoit Cloitre, Jan 07 2006
EXAMPLE
2.426320751167241187741569...
MATHEMATICA
RealDigits[Total[1/Fibonacci[Range[500]]^2], 10, 120][[1]] (* Harvey P. Dale, May 31 2016 *)
PROG
(PARI) sum(k=1, 500, 1./fibonacci(k)^2) \\ Benoit Cloitre, Jan 07 2006
CROSSREFS
KEYWORD
AUTHOR
Jonathan Vos Post, Apr 04 2005
EXTENSIONS
More terms from Benoit Cloitre, Jan 07 2006
STATUS
approved