The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181977 Expansion of b(q) * c(q^3)^2 / 9 in powers of q where b(), c() are cubic AGM theta functions. 1
 1, -3, 0, 8, -9, 0, 17, -27, 0, 40, -39, 0, 50, -72, 0, 96, -81, 0, 104, -150, 0, 176, -153, 0, 170, -243, 0, 280, -216, 0, 273, -360, 0, 400, -351, 0, 362, -510, 0, 560, -450, 0, 520, -648, 0, 736, -615, 0, 601, -864, 0, 936, -729, 0, 850, -1086, 0, 1160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). LINKS G. C. Greubel, Table of n, a(n) for n = 2..2500 FORMULA Expansion of (eta(q) * eta(q^9)^2 / eta(q^3))^3 in powers of q. Euler transform of period 9 sequence [-3, -3, 0, -3, -3, 0, -3, -3, -6, ...]. a(3*n + 1) = 0. a(3*n) = -3 * A106402(n). EXAMPLE G.f. = q^2 - 3*q^3 + 8*q^5 - 9*q^6 + 17*q^8 - 27*q^9 + 40*q^11 - 39*q^12 + ... MATHEMATICA eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]* eta[q^9]^2/eta[q^3])^3, {q, 0, 50}], q] (* G. C. Greubel, Aug 11 2018 *) PROG (PARI) {a(n) = my(A); if( n<2, 0, n = n-2; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^9 + A)^2 / eta(x^3 + A))^3, n))}; CROSSREFS Cf. A106402. Sequence in context: A189969 A021768 A155876 * A199659 A201584 A281298 Adjacent sequences: A181974 A181975 A181976 * A181978 A181979 A181980 KEYWORD sign AUTHOR Michael Somos, Apr 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 04:14 EDT 2024. Contains 373393 sequences. (Running on oeis4.)