login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106402
Expansion of eta(q^3)^9 / eta(q)^3 in powers of q.
6
1, 3, 9, 13, 24, 27, 50, 51, 81, 72, 120, 117, 170, 150, 216, 205, 288, 243, 362, 312, 450, 360, 528, 459, 601, 510, 729, 650, 840, 648, 962, 819, 1080, 864, 1200, 1053, 1370, 1086, 1530, 1224, 1680, 1350, 1850, 1560, 1944, 1584, 2208, 1845, 2451, 1803, 2592
OFFSET
1,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Number 3 of the 74 eta-quotients listed in Table I of Martin (1996).
a(n+1) is the number of partition triples of n where each partition is 3-core (see Theorem 3.1 of Wang link).
Convolution cube of A033687.
Convolution square is A198958. - Michael Somos, Dec 26 2015
REFERENCES
George E. Andrews and Bruce C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001). See p. 314, Eq. (14.2.14).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vaclav Kotesovec)
Jonathan M. Borwein and Peter B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012). See page 697.
Yves Martin, Multiplicative eta-quotients, Trans. Amer. Math. Soc. 348 (1996), no. 12, 4825-4856, see page 4852 Table I.
Hossein Movasati and Younes Nikdelan, Gauss-Manin Connection in Disguise: Dwork Family, arXiv preprint arXiv:1603.09411 [math.AG], 2016-2021.
Liuquan Wang, Explicit Formulas for Partition Pairs and Triples with 3-Cores, arXiv:1507.03099 [math.NT], 2015.
FORMULA
Expansion of (c(q) / 3)^3 in powers of q where c(q) is a cubic AGM theta function.
Euler transform of period 3 sequence [ 3, 3, -6, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 + 6*u*v*w + 8*u*w^2 - u^2*w.
G.f.: Sum_{k>0} k^2 * x^k / (1 + x^k + x^(2*k)) = x * Product_{k>0} (1 - x^(3*k))^9 / (1 - x^k)^3.
a(n) is multiplicative and a(p^e) = ((p^2)^(e+1) - u^(e+1)) / (p^2 - u) where u = 0, 1, -1 when p == 0, 1, 2 (mod 3). - Michael Somos, Oct 19 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 27^(-1/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A109041.
a(3*n) = 9 * a(n). a(3*n + 1) = A231947(n). - Michael Somos, May 18 2015
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = 4*Pi^3/(81*sqrt(3)) = 0.8840238... (A129404). - Amiram Eldar, Nov 09 2023
EXAMPLE
G.f. = q + 3*q^2 + 9*q^3 + 13*q^4 + 24*q^5 + 27*q^6 + 50*q^7 + 51*q^8 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, DivisorSum[ n, #^2 KroneckerSymbol[ n/#, 3] &]]; (* Michael Somos, Jul 19 2012 *)
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^3]^3 / QPochhammer[ q])^3, {q, 0, n}]; (* Michael Somos, Jul 19 2012 *)
nmax = 40; Rest[CoefficientList[Series[x * Product[(1 - x^(3*k))^9 / (1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 07 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A)^9 / eta(x + A)^3, n))};
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, d^2 * kronecker( n/d, 3)))};
(PARI) {a(n) = my(A, p, e, u); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; u = kronecker(-3, p); ((p^2)^(e+1) - u^(e+1)) / (p^2 - u)))};
(PARI) a(n) = sumdiv(n, d, ((d % 3) == 1)*(n/d)^2) - sumdiv(n, d, ((d % 3)== 2)*(n/d)^2); \\ Michel Marcus, Jul 14 2015
(Magma) A := Basis( ModularForms( Gamma1(3), 3), 52); A[2]; /* Michael Somos, May 18 2015 */
KEYWORD
nonn,easy,mult
AUTHOR
Michael Somos, May 02 2005
STATUS
approved