The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181976 Expansion of a(q) * b(q)^2 in powers of q where a(), b() are cubic AGM theta functions. 2
 1, 0, -27, 72, 0, -216, 270, 0, -459, 720, 0, -1080, 936, 0, -1350, 2160, 0, -2592, 2214, 0, -2808, 3600, 0, -4752, 4590, 0, -4590, 6552, 0, -7560, 5184, 0, -7371, 10800, 0, -10800, 9360, 0, -9774, 12240, 0, -15120, 13500, 0, -14040, 17712, 0, -19872, 14760 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). LINKS G. C. Greubel, Table of n, a(n) for n = 0..2500 FORMULA Expansion of b(q^3)^3 - 3 * b(q) * c(q^3)^2 in powers of q where b(), c() are cubic AGM theta functions. Expansion of b(q^3)^2 * (b(q) + c(q^3)) in powers of q^3 where b(), c() are cubic AGM theta functions. Expansion of (eta(q)^9 + 9 * q * eta(q)^6 * eta(q^9)^3) / eta(q^3)^3 in powers of q. a(3*n + 1) = 0. a(3*n) = A004007(n). EXAMPLE G.f. = 1 - 27*q^2 + 72*q^3 - 216*q^5 + 270*q^6 - 459*q^8 + 720*q^9 + ... MATHEMATICA eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]^9 + 9*q*eta[q]^6*eta[q^9]^3)/eta[q^3]^3, {q, 0, 50}], q] (* G. C. Greubel, Aug 11 2018 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^9 + 9 * x * eta(x + A)^6 * eta(x^9 + A)^3) / eta(x^3 + A)^3, n))}; CROSSREFS Cf. A004007. Sequence in context: A224525 A219130 A116302 * A039414 A043237 A044017 Adjacent sequences: A181973 A181974 A181975 * A181977 A181978 A181979 KEYWORD sign AUTHOR Michael Somos, Apr 04 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 23:32 EDT 2024. Contains 373488 sequences. (Running on oeis4.)