The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181976 Expansion of a(q) * b(q)^2 in powers of q where a(), b() are cubic AGM theta functions. 2
1, 0, -27, 72, 0, -216, 270, 0, -459, 720, 0, -1080, 936, 0, -1350, 2160, 0, -2592, 2214, 0, -2808, 3600, 0, -4752, 4590, 0, -4590, 6552, 0, -7560, 5184, 0, -7371, 10800, 0, -10800, 9360, 0, -9774, 12240, 0, -15120, 13500, 0, -14040, 17712, 0, -19872, 14760 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
FORMULA
Expansion of b(q^3)^3 - 3 * b(q) * c(q^3)^2 in powers of q where b(), c() are cubic AGM theta functions.
Expansion of b(q^3)^2 * (b(q) + c(q^3)) in powers of q^3 where b(), c() are cubic AGM theta functions.
Expansion of (eta(q)^9 + 9 * q * eta(q)^6 * eta(q^9)^3) / eta(q^3)^3 in powers of q.
a(3*n + 1) = 0. a(3*n) = A004007(n).
EXAMPLE
G.f. = 1 - 27*q^2 + 72*q^3 - 216*q^5 + 270*q^6 - 459*q^8 + 720*q^9 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]^9 + 9*q*eta[q]^6*eta[q^9]^3)/eta[q^3]^3, {q, 0, 50}], q] (* G. C. Greubel, Aug 11 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^9 + 9 * x * eta(x + A)^6 * eta(x^9 + A)^3) / eta(x^3 + A)^3, n))};
CROSSREFS
Cf. A004007.
Sequence in context: A224525 A219130 A116302 * A039414 A043237 A044017
KEYWORD
sign
AUTHOR
Michael Somos, Apr 04 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 18 23:32 EDT 2024. Contains 373488 sequences. (Running on oeis4.)