login
A181974
Triangle T(n,k), read by rows, given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -3, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
0
1, 1, 1, 2, 3, 1, 3, 4, 2, 1, 5, 7, 5, 4, 1, 8, 11, 10, 9, 3, 1, 13, 18, 20, 20, 9, 5, 1, 21, 29, 38, 40, 22, 15, 4, 1, 34, 47, 71, 78, 51, 40, 14, 6, 1, 55, 76, 130, 147, 111, 95, 40, 22, 5, 1, 89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
OFFSET
0,4
FORMULA
G.f.: (1+y*x+2*y*x^2)/(1-x-x^2-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 2, T(2,1) = 3 and T(n,k) = 0 if k<0 or if k>n.
T(n + 2k, 2k) = A037027(n + k, k).
T(n + 2k +1, 2k + 1) = A182001(n + k, k).
T(n,0) = Fibonacci(n+1).
EXAMPLE
Triangle begins :
1
1, 1
2, 3, 1
3, 4, 2, 1
5, 7, 5, 4, 1
8, 11, 10, 9, 3, 1
13, 18, 20, 20, 9, 5, 1
21, 29, 38, 40, 22, 15, 4, 1
34, 47, 71, 78, 51, 40, 14, 6, 1
55, 76, 130, 147, 111, 95, 40, 22, 5, 1
89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
144, 199, 420, 495, 474, 455, 256, 185, 65, 30, 6, 1
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Apr 06 2012
STATUS
approved