The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A181973 Prime-generating polynomial: 16*n^2 - 300*n + 1447. 3
 1447, 1163, 911, 691, 503, 347, 223, 131, 71, 43, 47, 83, 151, 251, 383, 547, 743, 971, 1231, 1523, 1847, 2203, 2591, 3011, 3463, 3947, 4463, 5011, 5591, 6203, 6847, 7523, 8231, 8971, 9743, 10547, 11383, 12251, 13151, 14083, 15047, 16043, 17071, 18131, 19223 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS This polynomial generates 30 primes in a row starting from n=0. The polynomial 16*n^2 - 628*n + 6203 generates the same primes in reverse order. I found in the same family of prime-generating polynomials (with the discriminant equal to -163*2^p, where p is even), the polynomials 4n^2 - 152n + 1607, generating 40 primes in row starting from n=0 (20 distinct ones) and 4n^2 - 140n + 1877, generating 36 primes in row starting from n=0 (18 distinct ones). The following 5 (10 with their "reversal" polynomials) are the only ones I know from the family of Euler's polynomial n^2 + n + 41 (having their discriminant equal to a multiple of -163) that generate more than 30 distinct primes in a row starting from n=0 (beside the Escott's polynomial n^2 - 79n + 1601): (1) 4n^2 - 154n + 1523 (4n^2 - 158n + 1601); (2) 9n^2 - 231n + 1523 (9n^2 - 471n + 6203); (3) 16n^2 - 292n + 1373 (16n^2 - 668n + 7013); (4) 25n^2 - 365n + 1373 (25n^2 - 1185n + 14083); (5) 16n^2 - 300n + 1447 (16n^2 - 628n + 6203). Note: For the first 2 (4 with their reversals), already reported, see the link below to C. Rivera's site. LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 M. Coman, Ten prime-generating quadratic polynomials, Preprint 2015. Factor Database, Factorizations of 16n^2-300n+1447. [Broken link?] Carlos Rivera, Puzzle 232: Primes and Cubic polynomials, The Prime Puzzles & Problems Connection. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: (1447-3178*x+1763*x^2)/(1-x)^3. - Bruno Berselli, Apr 06 2012 MATHEMATICA Table[16*n^2 - 300*n + 1447, {n, 0, 50}] (* T. D. Noe, Apr 04 2012 *) PROG (MAGMA) [n^2-75*n+1447: n in [0..176 by 4]]; // Bruno Berselli, Apr 06 2012 (PARI) a(n)=16*n^2 - 300*n + 1447 \\ Charles R Greathouse IV, Dec 08 2014 CROSSREFS Sequence in context: A328886 A031754 A031536 * A226097 A023311 A318710 Adjacent sequences:  A181970 A181971 A181972 * A181974 A181975 A181976 KEYWORD nonn,easy AUTHOR Marius Coman, Apr 04 2012 EXTENSIONS Offset changed from 1 to 0 by Bruno Berselli, Apr 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 13:04 EDT 2021. Contains 343063 sequences. (Running on oeis4.)